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Communicating Systems and Session Types

Programs written in session-typed programming languages are

guaranteed to obey their protocols.
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Key Technique: Program Equivalence

“Program equivalence is arguably one of the most

interesting and at the same time important problems

in formal verification.”1

1Lahiri et. al. “Program Equivalence”, Dagstuhl Reports, Vol. 8,

Issue 4, pp. 1–19, 2018.
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Some Existing Approaches to Equivalence

There are existing notions of program equivalence for

session-typed languages:

� Wadler’s Classical Processes (CP): Atkey [2017] gives a

relational semantics.

� Hypersequent CP: Kokke et al. [2019] give a denotational

semantics using Brzozowski derivatives.

� Synchronous session-typed π-calculus: Castellan and

Yoshida [2019] give a game semantics.

Problem: It is not clear how to extend these approaches to

handle full-featured languages.
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Reasoning About Programs in Rich Languages

When one attempts to combine language concepts,

unexpected and counterintuitive interactions arise. At

this point, even the most experienced designer’s

intuition must be buttressed by a rigorous definition

of what the language means. — John Reynolds, 1990
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Reasoning About Programs in Rich Languages

We want to reason about programs in a session-typed

language with:

� general recursion at the program and type level

� functional programming features

� higher-order features: send/receive channels and programs
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Back to Fundamentals

A process is a computational agent that interacts with its

environment solely through communication.

Communication is a sequence of atomic observable events

caused by a process.
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The Key Premise

Communication is the only observable phenomenon of

processes!
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Thesis Statement

Communication-based semantics elucidate

the structure of session-typed languages and allow us

to reason about programs written in these languages.
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Our Laboratory: Polarized SILL

We will study “Polarized SILL”, a language with:

1. a functional programming layer

2. session-typed message passing concurrency

3. general recursion (types and programs)

4. higher-order features: processes can send/receive

channels and programs
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Contributions

We give Polarized SILL

1. An observed communication semantics

2. A communication-based testing equivalences

framework

3. A communication-based denotational semantics

and we use these semantics to reason about processes.
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Polarized SILL

P c0 ∶ A0

c1 ∶ A1

cn ∶ An

⋮

Uses Provides

Where

� ci — channel name

� Ai — protocol (session type) for channel ci

� P — process
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Polarized SILL

P c0 ∶ A0

c1 ∶ A1

cn ∶ An

⋮

Uses Provides

Abbreviate as:

c1 ∶ A1, . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0 (n ≥ 0)
∆ ⊢ P ∶∶ c0 ∶ A0

where ∆ = c1 ∶ A1, . . . , cn ∶ An.
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Bit Streams in SILL

Bit stream protocol:

bits = (b0 ∶ bits)⊕ (b1 ∶ bits)

Example communications satisfying bits:

c0 ∶ bits
b0b1b0b0⋯

c1 ∶ bits
b1

c2 ∶ bits

�
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Flipping Bits

F o ∶ bitsi ∶ bits b0b1b0 b1b0b1

i : bits |- F :: o : bits

o <- F <- i = case i { b0 => o.b1; o <- F <- i

| b1 => o.b0; o <- F <- i }
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Observed Communication

Semantics



Observed Communication Semantics

Idea: The meaning of a process is the communications we

observe during its execution.

Questions:

1. What are observed communications?

2. How do we observe them?
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Session-Typed Communications

A session type specifies permitted communications.

Write w ε A to mean w is a communication satisfying the

session type A.

Examples:

� The empty communication � ε A.
� Bit stream communications are (b0,w) ε bits and

(b1,w) ε bits where w ε bits.
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Observing Communications

P c0 ∶ A0

w0 ε A0

c1 ∶ A1

w1 ε A1

cn ∶ An

wn ε An

⋮

jc1 ∶ A1, . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0oc0,...,cn = (c0 ∶ w0, . . . , cn ∶ wn).
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Example Observed Communications

Consider the process S sending a stream of zero bits:

⊢ S :: i : bits

i <- S = i.b0; i <- S

S i ∶ bits
b0b0b0⋯

j⊢ S ∶∶ i ∶ bitsoi = (i ∶ (b0, (b0, (b0, . . . ))))
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Observing Communication Between Processes

C

c1 ∶ A1

cj ∶ Aj

cn ∶ An

c0 ∶ A0

b1 ∶ B1

bi ∶ Bi

bm ∶ Bm

b0 ∶ B0

P
c1 ∶ A1

cj ∶ Aj

cn ∶ An

c0 ∶ A0

jb1 ∶ B1, . . . ,bm ∶ Bm ⊢ C[P] ∶∶ b0 ∶ B0ob0,...,bm = (b0 ∶ w0, . . . ,bm ∶ wm)
jb1 ∶ B1, . . . ,bm ∶ Bm ⊢ C[P] ∶∶ b0 ∶ B0oc0,...,cn = (c0 ∶ w ′0, . . . , cn ∶ w ′n)
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More Example Observed Communications

FS o ∶ bits
i ∶ bits

b0b0b0⋯ b1b1b1⋯

j⊢ C[F] ∶∶ o ∶ bitsoo = (o ∶ (b1, (b1, (b1, . . . ))))
j⊢ C[F] ∶∶ o ∶ bitsoi = (i ∶ (b0, (b0, (b0, . . . ))))

j⊢ C[F] ∶∶ o ∶ bitsoi,o = (i ∶ (b0, . . . ),o ∶ (b1, . . . ))

18
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Fairness

FS o ∶ bits
i ∶ bits

b0

b0

b0⋯

j⊢ C[F] ∶∶ o ∶ bitsoi,o = (i ∶ (b0, (b0, . . . )),o ∶ �)

Theorem

Observed communications are independent of the choice of

fair execution.

19
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Contributions

We give Polarized SILL

1. An observed communication semantics

2. A communication-based testing equivalences

framework

3. A communication-based denotational semantics

and we use these semantics to reason about processes.

20



Communication-Based Testing

Equivalences



Testing Equivalences

Main Idea: Two processes are equivalent if we cannot

observe any differences through experimentation.

21



Communication Experiments

22



Performing Experiments

Processes P and Q

are equivalent according to if

P = Q

23



Internal Communication Equivalence

Processes P and Q

are internally communication equivalent if

P = Q

for all

24



Congruence Relations

An equivalence relation ≡ is a congruence if

P ≡ Q implies

P ≡ Q

for all

25



Not A Congruence

Theorem

Internal communication equivalence is not a congruence

relation.

26



External Communication Equivalence

Processes P and Q

are externally communication equivalent if

P = Q

for all

27



Properties of External Communication Equivalence

Theorem

External communication equivalence is a congruence relation.

Barbed congruence is the canonical notion of process

equivalence.

Theorem

Processes are external communication equivalent if and only if

they are barbed congruent.
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New Semantics, Same Refrain

“Processes are equivalent if [. . . ] for all ”

29



Contributions

We give Polarized SILL

1. An observed communication semantics

2. A communication-based testing equivalences

framework

3. A communication-based denotational semantics

and we use these semantics to reason about processes.

30



Denotational Semantics



The Denotational Approach

C ⟦C⟧

Syntax / Programs Mathematical Objects

⟦⋅⟧

Compositional: the meaning of a program is a function of

the meanings of its parts.

Programs C and C′ are semantically equivalent if ⟦C⟧ = ⟦C′⟧.

31
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Denoting Protocols and Processes

A protocol A denotes a domain ⟦A⟧ of permissible

communications.

A process c1 ∶ A1, . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0 denotes a

continuous function ⟦P⟧ ∶ ⟦A1⟧ ×⋯ × ⟦An⟧→ ⟦A0⟧.

32



Monotonicity

Significance: “New” input does not affect “old” output.

If

P c0 ∶ bitsc1 ∶ bits
b0b0 b1b1

then never

P c0 ∶ bitsc1 ∶ bits
b0b0b0 b0b0

33



Continuity

Slogan: Processes cannot decide to send output

only after observing entire infinite inputs.

�

⊑

b0�

⊑

b0b1�

⊑

⋮

⊑

b0b1⋯

�

⊑

�

⊑

�

⊑

⋮

⊑

b1b0⋯b1b0⋯� = ⊔{�}

P

⋮
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Polarity of Communication

The polarity of a protocol is the direction in which its

messages flow on channels.

P c ∶ A∆ ⋮

Positive direction

Negative direction
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Splitting Channels

P c ∶ A∆ ⋮

P

∆ ⊢ P ∶∶ c ∶ A

⟦P⟧ ∶ “∆ × c”→ “∆ × c”

c
c

∆

∆ ⋮

⋮
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The Bidirectional Version

A protocol A denotes the domains

� ⟦A⟧ of negative (right-to-left) communications, and

� ⟦A⟧ of positive (left-to-right) communications.

A process c1 ∶ A1, . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0 denotes a

continuous function

⟦P⟧ ∶ ⟦A1⟧ ×⋯ × ⟦An⟧ × ⟦A0⟧→
→ ⟦A1⟧ ×⋯ × ⟦An⟧ × ⟦A0⟧
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Decomposing Communications

A protocol A denotes a decomposition function

jAo ∶ ⟦A⟧→ ⟦A⟧ × ⟦A⟧

from the domain ⟦A⟧ of complete communications into the

domains

� ⟦A⟧ of positive (left-to-right) communications,

� ⟦A⟧ of negative (right-to-left) communications.
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Processes “Fill In” Partial Communications

A process c1 ∶ A1, . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0 denotes a

continuous function

⟦P⟧ ∶ ⟦A1⟧ ×⋯ × ⟦An⟧ × ⟦A0⟧→
→ ⟦A1⟧ ×⋯⟦An⟧ × ⟦A0⟧

that is compatible with the decompositions

jAio ∶ ⟦Ai⟧→ ⟦Ai⟧ × ⟦Ai⟧.
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The Functional Layer

� Simply-typed λ-calculus with a fixed-point operator

� Typing judgment: Ψ ⊩M ∶ τ

� Standard denotational semantics:

⟦x1 ∶ τ1, . . . , xn ∶ τn ⊩M ∶ τ⟧ ∶ ⟦τ1⟧ ×⋯ × ⟦τn⟧→ ⟦τ⟧
� Includes quoted processes as a base type

Processes can depend on functional values through contexts Ψ:

Ψ; c1 ∶ A1, . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0

Processes now denote continuous functions

⟦P⟧ ∶ ⟦Ψ⟧→ [⟦A1⟧ ×⋯ × ⟦An⟧ × ⟦A0⟧→
→ ⟦A1⟧ ×⋯ × ⟦An⟧ × ⟦A0⟧]
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Soundness

Recall that processes P and Q are

denotationally equivalent if ⟦P⟧ = ⟦Q⟧.

Theorem

If two processes are denotationally equivalent, then they are

external communication equivalent and barbed congruent.
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Contributions

We give Polarized SILL

1. An observed communication semantics

2. A communication-based testing equivalences

framework

3. A communication-based denotational semantics

and we use these semantics to reason about processes.
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Thesis Statement

Communication-based semantics elucidate

the structure of session-typed languages and allow us

to reason about programs written in these languages.
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Other Results

1. Modelling recursive types required new techniques for

reasoning about parametrized fixed points of functors

[MFPS’20]

2. A study of fairness for multiset rewriting systems

[EXPRESS/SOS’20]

3. A collection of case studies to which I apply these

techniques

44
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Future Work

1. Applications to richer protocols, e.g., dependent protocols

2. Applications to richer communication topologies, e.g.,

multicast
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Thesis Statement

Communication-based semantics elucidate

the structure of session-typed languages and allow us

to reason about programs written in these languages.
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Relation to Deterministic Networks

My semantics generalizes Kahn’s 1974 semantics for

deterministic networks to support:

1. session-typed communication instead of streams of values

of simple type like integers or booleans

2. bidirectional communication instead of unidirectional

streams of values

Generalizing Kahn-style semantics to handle non-determinism

is difficult because of the Keller and Brock-Ackerman

anomalies. Though execution in Polarized SILL is

non-deterministic, its processes have deterministic

input/output behaviour.
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Relation to the Geometry of Interaction I

My semantics exists in a GoI construction G(CPO):

� Objects are pairs (A+,A−) of objects A+,A− from CPO

� Morphisms f ∶ (A+,A−)→ (B+,B−) are morphism

f̂ ∶ A+ ×B− → A− ×B+ in CPO

� Composition g ○ f is Tr(ĝ × f̂ )

Expressing my semantics in this construction:

⟦∆1,∆2 ⊢ c ← P ; Q ∶∶ d ∶ D⟧
= ⟦∆2, c ∶ C ⊢ Q ∶∶ d ∶ D⟧ ○ ⟦∆1 ⊢ P ∶∶ c ∶ C⟧
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Relation to the Geometry of Interaction II

� Abramsky and Jagadeesan (1994) use this construction to

give a type-free interpretation of classical linear logic

where all types denote the same “universal domain”

� Abramsky, Haghverdi, and Scott (2002) use it to give an

algebraic framework for Girard’s Geometry of Interaction

� I use it to give a semantics that captures the

computational aspects of a programming language with

recursion
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Relation to Atkey’s Denotational Semantics

In Atkey’s denotational semantics for CP:

� Protocols denote sets of communications

� ⟦⊢ P ∶∶ Γ⟧ ⊂ ⟦Γ⟧ is a relation containing the possible

observed communications on its free channels, e.g.,

⟦⊢ x ↔ y ∶∶ x ∶ A, y ∶ A⊥⟧ = {(a, a) ∣ a ∈ ⟦A⟧}
⟦1⟧ = ⟦1⊥⟧ = {∗}

⟦⊢ x[] ∶∶ x ∶ 1⟧ = {(∗)}
⟦⊢ x().P ∶∶ Γ, x ∶ 1⊥⟧ = {(γ,∗) ∣ γ ∈ ⟦⊢ P ∶∶ Γ⟧}
⟦⊢ νx .(P ∣Q) ∶∶ Γ,∆⟧ = {(γ, δ) ∣ (γ, a) ∈ ⟦⊢ P ∶∶ Γ, x ∶ A⟧,

(δ, a) ∈ ⟦⊢ Q ∶∶∆, x ∶ A⊥⟧}
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