Communication-Based Semantics for Recursive Session-Typed Processes

Ryan Kavanagh

September 28, 2021

Committee: Stephen Brookes, co-chair Frank Pfenning, co-chair Jan Hoffmann Luís Caires, Universidade Nova de Lisboa Gordon Plotkin, University of Edinburgh

Programs written in session-typed programming languages are guaranteed to obey their protocols.

"Program equivalence is arguably one of the most interesting and at the same time important problems in formal verification."¹

¹Lahiri et. al. "Program Equivalence", Dagstuhl Reports, Vol. 8, Issue 4, pp. 1–19, 2018.

Some Existing Approaches to Equivalence

- Wadler's Classical Processes (CP): Atkey [2017] gives a relational semantics.
- Hypersequent CP: Kokke et al. [2019] give a denotational semantics using Brzozowski derivatives.

- Wadler's Classical Processes (CP): Atkey [2017] gives a relational semantics.
- Hypersequent CP: Kokke et al. [2019] give a denotational semantics using Brzozowski derivatives.
- Synchronous session-typed π -calculus: Castellan and Yoshida [2019] give a game semantics.

- Wadler's Classical Processes (CP): Atkey [2017] gives a relational semantics.
- Hypersequent CP: Kokke et al. [2019] give a denotational semantics using Brzozowski derivatives.
- Synchronous session-typed π -calculus: Castellan and Yoshida [2019] give a game semantics.

- Wadler's Classical Processes (CP): Atkey [2017] gives a relational semantics.
- Hypersequent CP: Kokke et al. [2019] give a denotational semantics using Brzozowski derivatives.
- Synchronous session-typed π -calculus: Castellan and Yoshida [2019] give a game semantics.

Problem: It is not clear how to extend these approaches to handle full-featured languages.

When one attempts to combine language concepts, unexpected and counterintuitive interactions arise. At this point, even the most experienced designer's intuition must be buttressed by a rigorous definition of what the language means. — John Reynolds, 1990 We want to reason about programs in a session-typed language with:

- general recursion at the program and type level
- functional programming features
- higher-order features: send/receive channels and programs

- A process is a computational agent that interacts with its environment solely through communication.
- Communication is a sequence of atomic observable events caused by a process.

Communication is the only observable phenomenon of processes!

Communication-based semantics elucidate the structure of session-typed languages and allow us to reason about programs written in these languages. We will study "Polarized SILL", a language with:

- 1. a functional programming layer
- 2. session-typed message passing concurrency
- 3. general recursion (types and programs)
- 4. higher-order features: processes can send/receive channels and programs

We give Polarized SILL

- 1. An observed communication semantics
- 2. A communication-based testing equivalences framework
- 3. A communication-based denotational semantics

and we use these semantics to reason about processes.

Polarized SILL

Where

- c_i channel name
- A_i protocol (session type) for channel c_i
- P process

Polarized SILL

Where

- c_i channel name
- A_i protocol (session type) for channel c_i
- P process

Polarized SILL

Abbreviate as:

$$c_1: A_1, \dots, c_n: A_n \vdash P :: c_0: A_0$$
 $(n \ge 0)$
 $\Delta \vdash P :: c_0: A_0$

where $\Delta = c_1 : A_1, \ldots, c_n : A_n$.

Bit stream protocol:

$$bits = (b0:bits) \oplus (b1:bits)$$

Example communications satisfying bits:

Bit stream protocol:

$$bits = (b0:bits) \oplus (b1:bits)$$

Example communications satisfying bits:

Observed Communication Semantics
Idea: The meaning of a process is the communications we observe during its execution.

Idea: The meaning of a process is the communications we observe during its execution.

Questions:

1. What are observed communications?

Idea: The meaning of a process is the communications we observe during its execution.

Questions:

- 1. What are observed communications?
- 2. How do we observe them?

A session type specifies permitted communications.

A session type specifies permitted communications. Write $w \in A$ to mean w is a communication satisfying the session type A. A session type specifies permitted communications.

Write $w \in A$ to mean w is a communication satisfying the session type A.

Examples:

- The empty communication $\perp \varepsilon A$.
- Bit stream communications are (b0, w) ε bits and (b1, w) ε bits where w ε bits.

$$(c_1: A_1, \ldots, c_n: A_n \vdash P :: c_0: A_0)_{c_0, \ldots, c_n} = (c_0: w_0, \ldots, c_n: w_n).$$

Consider the process S sending a stream of zero bits:

```
⊢ S :: i : bits
i <- S = i.b0; i <- S
```

Consider the process S sending a stream of zero bits:

```
⊢ S :: i : bits
i <- S = i.b0; i <- S
```


Consider the process S sending a stream of zero bits:

```
⊢ S :: i : bits
i <- S = i.b0; i <- S
```


 $(\vdash S :: i : bits)_i = (i : (b0, (b0, (b0, \dots))))$

 $(b_1: B_1, \ldots, b_m: B_m \vdash C[P] :: b_0: B_0)_{b_0, \ldots, b_m} = (b_0: w_0, \ldots, b_m: w_m)$

 $(b_1: B_1, \dots, b_m: B_m \vdash C[P] :: b_0: B_0)_{b_0, \dots, b_m} = (b_0: w_0, \dots, b_m: w_m)$ $(b_1: B_1, \dots, b_m: B_m \vdash C[P] :: b_0: B_0)_{c_0, \dots, c_n} = (c_0: w'_0, \dots, c_n: w'_n)$

 $(\vdash \mathcal{C}[\texttt{F}] :: \texttt{o:bits})_{\texttt{o}} = (\texttt{o:}(\texttt{b1}, (\texttt{b1}, (\texttt{b1}, \dots))))$

 $\langle \vdash \mathcal{C}[F] :: o: bits \rangle_o = (o: (b1, (b1, (b1, \dots))))$ $\langle \vdash \mathcal{C}[F] :: o: bits \rangle_i = (i: (b0, (b0, (b0, \dots))))$

 $(\vdash \mathcal{C}[F] :: o: bits)_o = (o: (b1, (b1, (b1, \dots))))$ $(\vdash \mathcal{C}[F] :: o: bits)_i = (i: (b0, (b0, (b0, \dots))))$ $(\vdash \mathcal{C}[F] :: o: bits)_{i,o} = (i: (b0, \dots), o: (b1, \dots))$

Fairness

 $\langle \vdash \mathcal{C}[\texttt{F}] :: \texttt{o:bits} \rangle_{\texttt{i,o}} = (\texttt{i:}(\texttt{b0},(\texttt{b0},\dots)),\texttt{o:}\bot)$

 $(\vdash C[F] :: o: bits)_{i,o} = (i: (b0, (b0, \dots)), o: \bot)$

Theorem

Observed communications are independent of the choice of fair execution.

We give Polarized SILL

- 1. An observed communication semantics
- 2. A communication-based testing equivalences framework
- 3. A communication-based denotational semantics

and we use these semantics to reason about processes.

Communication-Based Testing Equivalences

Main Idea: Two processes are equivalent if we cannot observe any differences through experimentation.

Communication Experiments

Performing Experiments

are equivalent according to

Internal Communication Equivalence

are internally communication equivalent if

Congruence Relations

An equivalence relation \equiv is a **congruence** if

Internal communication equivalence is not a congruence relation.

External Communication Equivalence

are externally communication equivalent if

External communication equivalence is a congruence relation.

External communication equivalence is a congruence relation.

Barbed congruence is the canonical notion of process equivalence.

External communication equivalence is a congruence relation.

Barbed congruence is the canonical notion of process equivalence.

Theorem

Processes are external communication equivalent if and only if they are barbed congruent. "Processes are equivalent if $\left[\ldots\right]$ for all

We give Polarized SILL

- 1. An observed communication semantics
- 2. A communication-based testing equivalences framework
- 3. A communication-based denotational semantics

and we use these semantics to reason about processes.

Denotational Semantics

Compositional: the meaning of a program is a function of the meanings of its parts.

Compositional: the meaning of a program is a function of the meanings of its parts.

Programs C and C' are **semantically equivalent** if [C] = [C'].

A **protocol** A denotes a **domain** $\llbracket A \rrbracket$ of permissible communications.

A process $c_1 : A_1, \ldots, c_n : A_n \vdash P :: c_0 : A_0$ denotes a continuous function $\llbracket P \rrbracket : \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \rightarrow \llbracket A_0 \rrbracket$.

Significance: "New" input does not affect "old" output. If

$$c_1: bits \xrightarrow{b0 b0} P \xrightarrow{b1 b1} c_0: bits$$

then never

$$c_1: bits \xrightarrow{b0 b0 b0} P \xrightarrow{b0 b0} c_0: bits$$

Slogan: Processes cannot decide to send output only after observing entire infinite inputs.

b0 b1 ··· ⊔I E b0 b1 ⊥ ⊔I b0 ⊥ ⊔I L

The **polarity** of a protocol is the direction in which its messages flow on channels.

Splitting Channels

Splitting Channels

A **protocol** A denotes the domains

- $\llbracket A \rrbracket$ of negative (right-to-left) communications, and
- **[***A***]** of positive (left-to-right) communications.

A **process** $c_1 : A_1, \ldots, c_n : A_n \vdash P :: c_0 : A_0$ denotes a continuous function

$$\llbracket P \rrbracket : \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \times \llbracket A_0 \rrbracket \rightarrow$$
$$\rightarrow \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \times \llbracket A_0 \rrbracket$$

A protocol A denotes a decomposition function

$$\langle A \rangle : \llbracket A \rrbracket \to \llbracket A \rrbracket \times \llbracket A \rrbracket$$

from the domain $[\![A]\!]$ of complete communications into the domains

- **[A]** of positive (left-to-right) communications,
- [[A]] of negative (right-to-left) communications.

A **process** $c_1 : A_1, \ldots, c_n : A_n \vdash P :: c_0 : A_0$ denotes a continuous function

$$\llbracket P \rrbracket : \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \times \llbracket A_0 \rrbracket \rightarrow$$
$$\rightarrow \llbracket A_1 \rrbracket \times \cdots \llbracket A_n \rrbracket \times \llbracket A_0 \rrbracket$$

that is compatible with the decompositions $\langle A_i \rangle : \llbracket A_i \rrbracket \rightarrow \llbracket A_i \rrbracket \times \llbracket A_i \rrbracket.$

- Simply-typed $\lambda\text{-calculus}$ with a fixed-point operator
- Typing judgment: $\Psi \Vdash M : \tau$

- Simply-typed $\lambda\text{-calculus}$ with a fixed-point operator
- Typing judgment: $\Psi \Vdash M : \tau$
- Standard denotational semantics:

$$\llbracket x_1:\tau_1,\ldots,x_n:\tau_n \Vdash M:\tau \rrbracket:\llbracket \tau_1 \rrbracket \times \cdots \times \llbracket \tau_n \rrbracket \to \llbracket \tau \rrbracket$$

- Simply-typed $\lambda\text{-calculus}$ with a fixed-point operator
- Typing judgment: $\Psi \Vdash M : \tau$
- Standard denotational semantics:

$$\llbracket x_1:\tau_1,\ldots,x_n:\tau_n \Vdash M:\tau \rrbracket:\llbracket \tau_1 \rrbracket \times \cdots \times \llbracket \tau_n \rrbracket \to \llbracket \tau \rrbracket$$

- Simply-typed $\lambda\text{-calculus}$ with a fixed-point operator
- Typing judgment: $\Psi \Vdash M : \tau$
- Standard denotational semantics:

 $\llbracket x_1:\tau_1,\ldots,x_n:\tau_n \Vdash M:\tau \rrbracket:\llbracket \tau_1 \rrbracket \times \cdots \times \llbracket \tau_n \rrbracket \to \llbracket \tau \rrbracket$

• Includes quoted processes as a base type

- Simply-typed $\lambda\text{-calculus}$ with a fixed-point operator
- Typing judgment: $\Psi \Vdash M : \tau$
- Standard denotational semantics:

 $\llbracket x_1:\tau_1,\ldots,x_n:\tau_n \Vdash M:\tau \rrbracket:\llbracket \tau_1 \rrbracket \times \cdots \times \llbracket \tau_n \rrbracket \to \llbracket \tau \rrbracket$

• Includes quoted processes as a base type

Processes can depend on functional values through contexts Ψ :

$$\Psi; c_1: A_1, \ldots, c_n: A_n \vdash P :: c_0: A_0$$

- Simply-typed $\lambda\text{-calculus}$ with a fixed-point operator
- Typing judgment: $\Psi \Vdash M : \tau$
- Standard denotational semantics:

 $\llbracket x_1:\tau_1,\ldots,x_n:\tau_n \Vdash M:\tau \rrbracket:\llbracket \tau_1 \rrbracket \times \cdots \times \llbracket \tau_n \rrbracket \to \llbracket \tau \rrbracket$

• Includes quoted processes as a base type

Processes can depend on functional values through contexts Ψ :

$$\Psi; c_1: A_1, \ldots, c_n: A_n \vdash P :: c_0: A_0$$

Processes now denote continuous functions

$$\llbracket P \rrbracket : \llbracket \Psi \rrbracket \to \llbracket \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \times \llbracket A_0 \rrbracket \to$$
$$\to \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \times \llbracket A_0 \rrbracket]$$

Recall that processes P and Q are **denotationally equivalent** if [P] = [Q].

Recall that processes P and Q are **denotationally equivalent** if $[\![P]\!] = [\![Q]\!]$.

Theorem

If two processes are denotationally equivalent, then they are external communication equivalent and barbed congruent.

We give Polarized SILL

- 1. An observed communication semantics
- 2. A communication-based testing equivalences framework
- 3. A communication-based denotational semantics

and we use these semantics to reason about processes.
Communication-based semantics elucidate the structure of session-typed languages and allow us to reason about programs written in these languages. Modelling recursive types required new techniques for reasoning about parametrized fixed points of functors [MFPS'20]

- Modelling recursive types required new techniques for reasoning about parametrized fixed points of functors [MFPS'20]
- 2. A study of fairness for multiset rewriting systems [EXPRESS/SOS'20]

- Modelling recursive types required new techniques for reasoning about parametrized fixed points of functors [MFPS'20]
- 2. A study of fairness for multiset rewriting systems [EXPRESS/SOS'20]
- 3. A collection of case studies to which I apply these techniques

- 1. Applications to richer protocols, e.g., dependent protocols
- 2. Applications to richer communication topologies, e.g., multicast

Acknowledgements

Communication-based semantics elucidate the structure of session-typed languages and allow us to reason about programs written in these languages.

Backup Slides

My semantics generalizes Kahn's 1974 semantics for deterministic networks to support:

- 1. session-typed communication instead of streams of values of simple type like integers or booleans
- 2. *bidirectional* communication instead of unidirectional streams of values

Generalizing Kahn-style semantics to handle non-determinism is difficult because of the Keller and Brock-Ackerman anomalies. Though execution in Polarized SILL is non-deterministic, its processes have deterministic input/output behaviour. My semantics exists in a Gol construction $\mathcal{G}(CPO)$:

- Objects are pairs (A⁺, A⁻) of objects A⁺, A⁻ from **CPO**
- Morphisms $f : (A^+, A^-) \to (B^+, B^-)$ are morphism $\hat{f} : A^+ \times B^- \to A^- \times B^+$ in **CPO**
- Composition $g \circ f$ is $Tr(\hat{g} \times \hat{f})$

Expressing my semantics in this construction:

$$\begin{bmatrix} \Delta_1, \Delta_2 \vdash c \leftarrow P; \ Q :: d : D \end{bmatrix}$$

=
$$\begin{bmatrix} \Delta_2, c : C \vdash Q :: d : D \end{bmatrix} \circ \begin{bmatrix} \Delta_1 \vdash P :: c : C \end{bmatrix}$$

Relation to the Geometry of Interaction II

- Abramsky and Jagadeesan (1994) use this construction to give a type-free interpretation of classical linear logic where all types denote the same "universal domain"
- Abramsky, Haghverdi, and Scott (2002) use it to give an algebraic framework for Girard's Geometry of Interaction
- I use it to give a semantics that captures the computational aspects of a programming language with recursion

Relation to Atkey's Denotational Semantics

In Atkey's denotational semantics for CP:

- Protocols denote sets of communications
- [[⊢ P :: Γ]] ⊂ [[Γ]] is a relation containing the possible observed communications on its free channels, e.g.,

$$\begin{bmatrix} \vdash x \leftrightarrow y :: x : A, y : A^{\perp} \end{bmatrix} = \{(a, a) \mid a \in \llbracket A \rrbracket\} \\ \llbracket \mathbf{1} \rrbracket = \llbracket \mathbf{1}^{\perp} \rrbracket = \{*\} \\ \llbracket \vdash x \llbracket : x : \mathbf{1} \rrbracket = \{(*)\} \\ \llbracket \vdash x().P :: \Gamma, x : \mathbf{1}^{\perp} \rrbracket = \{(\gamma, *) \mid \gamma \in \llbracket \vdash P :: \Gamma \rrbracket\} \\ \llbracket \vdash \nu x.(P|Q) :: \Gamma, \Delta \rrbracket = \{(\gamma, \delta) \mid (\gamma, a) \in \llbracket \vdash P :: \Gamma, x : A \rrbracket, \\ (\delta, a) \in \llbracket \vdash Q :: \Delta, x : A^{\perp} \rrbracket\}$$