
Some Properties of Parametrized

Fixed Points on O-Categories

And Applications to Session Types

Ryan Kavanagh

MFPS XXXVI

Carnegie Mellon University

Session-Typing Communication

C S

A — communication protocol (session type)

1

Session-Typing Communication

C S
A

A — communication protocol (session type)

1

Session-Typing Communication

C S
A

A — communication protocol (session type)

� internal choice (A⊕ B)

� external choice (A & B)

� channel transmission (A⊗ B , A (B)

� recursive protocols rec(α.A), etc.

1

Session-Typing Communication

C S
A

A — communication protocol (session type)

� internal choice (A⊕ B)

� external choice (A & B)

� channel transmission (A⊗ B , A (B)

� recursive protocols rec(α.A), etc.

1

Session-Typing Communication

C S
A

A — communication protocol (session type)

� internal choice (A⊕ B)

� external choice (A & B)

� channel transmission (A⊗ B , A (B)

� recursive protocols rec(α.A), etc.

1

Session-Typing Communication

C S
A

A

A — communication protocol (session type)

� internal choice (A⊕ B)

� external choice (A & B)

� channel transmission (A⊗ B , A (B)

� recursive protocols rec(α.A), etc.

1

Session-Typing Communication

C S
A

A

A — communication protocol (session type)

JCK : JAK→ JAK

JSK : JAK→ JAK

1

Session-Typing Communication

C S
A

A

A — communication protocol (session type)

JCK : JAK→ JAK

JSK : JAK→ JAK

JAK — domain of (bidirectional) communications satisfying A

1

Session-Typing Communication

C S
A

A

A — communication protocol (session type)

JCK : JAK→ JAK

JSK : JAK→ JAK

JAK — domain of (bidirectional) communications satisfying A

Want an embedding JAK→ JAK× JAK.

1

Open Session-Types

Generalize JAK→ JAK× JAK to open session types Ξ ` A:

DCPO
Ξ =

∏
α∈Ξ

DCPO

JΞ ` AK , JΞ ` AK, JΞ ` AK : DCPOΞ l.c.−→ DCPO

The embedding becomes a natural transformation:

L Ξ ` A M : JΞ ` AK⇒ JΞ ` AK× JΞ ` AK

where each component of L Ξ ` A M is an embedding.

2

Open Session-Types

Generalize JAK→ JAK× JAK to open session types Ξ ` A:

DCPO
Ξ =

∏
α∈Ξ

DCPO

JΞ ` AK , JΞ ` AK, JΞ ` AK : DCPOΞ l.c.−→ DCPO

The embedding becomes a natural transformation:

L Ξ ` A M : JΞ ` AK⇒ JΞ ` AK× JΞ ` AK

where each component of L Ξ ` A M is an embedding.

2

Recursive Session-Types

Recursive session types are formed by the following rule:

Ξ, α ` A

Ξ ` rec(α.A)

Given

L Ξ, α ` A M : JΞ, α ` AK⇒ JΞ, α ` AK× JΞ, α ` AK,

how do we define

L Ξ ` rec(α.A) M : JΞ ` rec(α.A)K⇒
JΞ ` rec(α.A)K× JΞ ` rec(α.A)K?

Should respect unfolding, e.g.,

JΞ ` rec(α.A)K ∼= JΞ ` [rec(α.A)/α]AK

= JΞ, α ` AK (−, JΞ ` rec(α.A)K)

3

Recursive Session-Types

Recursive session types are formed by the following rule:

Ξ, α ` A

Ξ ` rec(α.A)

Given

L Ξ, α ` A M : JΞ, α ` AK⇒ JΞ, α ` AK× JΞ, α ` AK,

how do we define

L Ξ ` rec(α.A) M : JΞ ` rec(α.A)K⇒
JΞ ` rec(α.A)K× JΞ ` rec(α.A)K?

Should respect unfolding, e.g.,

JΞ ` rec(α.A)K ∼= JΞ ` [rec(α.A)/α]AK

= JΞ, α ` AK (−, JΞ ` rec(α.A)K)

3

Recursive Session-Types

Recursive session types are formed by the following rule:

Ξ, α ` A

Ξ ` rec(α.A)

Given

L Ξ, α ` A M : JΞ, α ` AK⇒ JΞ, α ` AK× JΞ, α ` AK,

how do we define

L Ξ ` rec(α.A) M : JΞ ` rec(α.A)K⇒
JΞ ` rec(α.A)K× JΞ ` rec(α.A)K?

Should respect unfolding, e.g.,

JΞ ` rec(α.A)K ∼= JΞ ` [rec(α.A)/α]AK

= JΞ, α ` AK (−, JΞ ` rec(α.A)K)
3

Parametrized Families of Fixed Points

Given F : DCPOΞ,α → DCPO, we can find a parametrized

family of fixed points F † : DCPOΞ → DCPO by taking:

F †D = FIX(F (D,−)).

The family satisfies for all D:

F †D ∼= F (D,F †D)

Example: if F = JΞ, α ` AK and JΞ ` rec(α.A)K = F †, then

JΞ ` rec(α.A)K ∼= JΞ, α ` AK (−, JΞ ` rec(α.A)K).

4

Parametrized Families of Fixed Points

Given F : DCPOΞ,α → DCPO, we can find a parametrized

family of fixed points F † : DCPOΞ → DCPO by taking:

F †D = FIX(F (D,−)).

The family satisfies for all D:

F †D ∼= F (D,F †D)

Example: if F = JΞ, α ` AK and JΞ ` rec(α.A)K = F †, then

JΞ ` rec(α.A)K ∼= JΞ, α ` AK (−, JΞ ` rec(α.A)K).

4

Parametrized Families of Fixed Points

Given F : DCPOΞ,α → DCPO, we can find a parametrized

family of fixed points F † : DCPOΞ → DCPO by taking:

F †D = FIX(F (D,−)).

The family satisfies for all D:

F †D ∼= F (D,F †D)

Example: if F = JΞ, α ` AK and JΞ ` rec(α.A)K = F †, then

JΞ ` rec(α.A)K ∼= JΞ, α ` AK (−, JΞ ` rec(α.A)K).

4

Interpreting Recursive Session Types

Is this (·)† functorial? Does it preserve embeddings?

Wrong: Take L Ξ ` rec(α.A) M to be

L Ξ, α ` A M† : JΞ, α ` AK† ⇒ (JΞ, α ` AK× JΞ, α ` AK)† .

Problem: What are JΞ ` rec(α.A)K and JΞ ` rec(α.A)K?

In general, (F × G)† 6∼= F † × G †.

5

Interpreting Recursive Session Types

Is this (·)† functorial? Does it preserve embeddings?

Wrong: Take L Ξ ` rec(α.A) M to be

L Ξ, α ` A M† : JΞ, α ` AK† ⇒ (JΞ, α ` AK× JΞ, α ` AK)† .

Problem: What are JΞ ` rec(α.A)K and JΞ ` rec(α.A)K?

In general, (F × G)† 6∼= F † × G †.

5

This Talk

We give a parametrized fixed-point operator (·)† on

O-categories suitable for interpreting recursive session types.

It is locally continuous and satisfies the Conway identities.

6

O-Categories and Local Continuity

Definition

An O-category is a category K where every homset K (C ,D)

is a dcpo, and where composition of morphisms is continuous.

Definition

A functor F : C → D between O-categories is

locally continuous if the maps f 7→ Ff are all continuous.

Definition

An embedding-projection pair (e-p-pair) is a pair of

morphisms e : A→ B and p : B → A such that p ◦ e = idA

and e ◦ p v idB .

7

O-Categories and Local Continuity

Definition

An O-category is a category K where every homset K (C ,D)

is a dcpo, and where composition of morphisms is continuous.

Definition

A functor F : C → D between O-categories is

locally continuous if the maps f 7→ Ff are all continuous.

Definition

An embedding-projection pair (e-p-pair) is a pair of

morphisms e : A→ B and p : B → A such that p ◦ e = idA

and e ◦ p v idB .

7

O-Categories and Local Continuity

Definition

An O-category is a category K where every homset K (C ,D)

is a dcpo, and where composition of morphisms is continuous.

Definition

A functor F : C → D between O-categories is

locally continuous if the maps f 7→ Ff are all continuous.

Definition

An embedding-projection pair (e-p-pair) is a pair of

morphisms e : A→ B and p : B → A such that p ◦ e = idA

and e ◦ p v idB .

7

Canonical Fixed Points

Input: Locally continuous F : K → K

Output: Object FIX(F) such that F (FIX(F)) ∼= FIX(F)

Define: Ω(F) : ω → K by

Ω(F)(n→ n + 1) = F n! : F n⊥ → F n+1⊥.

colim Ω(F)

Ω(F) : ⊥ F⊥ F 2⊥ F 3⊥ · · ·! F ! F 2! F 3!

Define: FIX(F) = colim Ω(F).

8

Canonical Fixed Points

Input: Locally continuous F : K → K

Output: Object FIX(F) such that F (FIX(F)) ∼= FIX(F)

Define: Ω(F) : ω → K by

Ω(F)(n→ n + 1) = F n! : F n⊥ → F n+1⊥.

colim Ω(F)

Ω(F) : ⊥ F⊥ F 2⊥ F 3⊥ · · ·! F ! F 2! F 3!

Define: FIX(F) = colim Ω(F).

8

Canonical Fixed Points

Input: Locally continuous F : K → K

Output: Object FIX(F) such that F (FIX(F)) ∼= FIX(F)

Define: Ω(F) : ω → K by

Ω(F)(n→ n + 1) = F n! : F n⊥ → F n+1⊥.

colim Ω(F)

Ω(F) : ⊥ F⊥ F 2⊥ F 3⊥ · · ·! F ! F 2! F 3!

Define: FIX(F) = colim Ω(F).

8

Canonical Fixed Points

Input: Locally continuous F : K → K

Output: Object FIX(F) such that F (FIX(F)) ∼= FIX(F)

Define: Ω(F) : ω → K by

Ω(F)(n→ n + 1) = F n! : F n⊥ → F n+1⊥.

colim Ω(F)

Ω(F) : ⊥ F⊥ F 2⊥ F 3⊥ · · ·! F ! F 2! F 3!

Define: FIX(F) = colim Ω(F).

8

Canonical Fixed Points

Input: Locally continuous F : K → K

Output: Object FIX(F) such that F (FIX(F)) ∼= FIX(F)

Define: Ω(F) : ω → K by

Ω(F)(n→ n + 1) = F n! : F n⊥ → F n+1⊥.

colim Ω(F)

Ω(F) : ⊥ F⊥ F 2⊥ F 3⊥ · · ·! F ! F 2! F 3!

Define: FIX(F) = colim Ω(F).

8

Canonical Fixed Points

Input: Locally continuous F : K → K

Output: Object FIX(F) such that F (FIX(F)) ∼= FIX(F)

Define: Ω(F) : ω → K by

Ω(F)(n→ n + 1) = F n! : F n⊥ → F n+1⊥.

colim Ω(F)

Ω(F) : ⊥ F⊥ F 2⊥ F 3⊥ · · ·! F ! F 2! F 3!

Define: FIX(F) = colim Ω(F).

8

Canonical Fixed Points

Input: Locally continuous F : K → K

Output: Object FIX(F) such that F (FIX(F)) ∼= FIX(F)

Define: Ω(F) : ω → K by

Ω(F)(n→ n + 1) = F n! : F n⊥ → F n+1⊥.

colim Ω(F)

Ω(F) : ⊥ F⊥ F 2⊥ F 3⊥ · · ·! F ! F 2! F 3!

Define: FIX(F) = colim Ω(F).

8

Canonical Fixed Points

Input: Locally continuous F : K → K

Output: Object FIX(F) such that F (FIX(F)) ∼= FIX(F)

Define: Ω(F) : ω → K by

Ω(F)(n→ n + 1) = F n! : F n⊥ → F n+1⊥.

colim Ω(F)

Ω(F) : ⊥ F⊥ F 2⊥ F 3⊥ · · ·! F ! F 2! F 3!

Define: FIX(F) = colim Ω(F).

8

Generalizing Links

Let LinksK be:

Objects: (C , c ,F) where F : K
l.c.−→ K and

c : C → FC is an embedding;

Morphisms: (h, η) : (C , k ,F)→ (D, d ,G) is h : C → D and

(natural) η : F ⇒ G satisfying

C FC

FD GC

D GD

h

c

Fh ηC

η∗h

ηD Gh
d

Write η ∗ h for ηD ◦ Fh = Gh ◦ ηC .

9

Generalizing Links

Let LinksK be:

Objects: (C , c ,F) where F : K
l.c.−→ K and

c : C → FC is an embedding;

Morphisms: (h, η) : (C , k ,F)→ (D, d ,G) is h : C → D and

(natural) η : F ⇒ G satisfying

C FC

FD GC

D GD

h

c

Fh ηC

η∗h

ηD Gh
d

Write η ∗ h for ηD ◦ Fh = Gh ◦ ηC .

9

Generalizing Links

Let LinksK be:

Objects: (C , c ,F) where F : K
l.c.−→ K and

c : C → FC is an embedding;

Morphisms: (h, η) : (C , k ,F)→ (D, d ,G) is h : C → D and

(natural) η : F ⇒ G satisfying

C FC

FD GC

D GD

h

c

Fh ηC

η∗h

ηD Gh
d

Write η ∗ h for ηD ◦ Fh = Gh ◦ ηC .

9

Generalizing Chains

Define Ω : LinksK → [ω → K] by

Ω(C , c ,F) : C FC F 2C F 3C · · ·

Ω(D, d ,G) : D GD G 2D G 3D · · ·

Ω(h,η) h

c

η∗h

Fc

η(2)∗h

F 2c

η(3)∗h

F 3c

d Gd G2d G3d

where η(n) = η ∗ · · · ∗ η : F n ⇒ G n for η : F ⇒ G .

10

Generalizing Chains

Define Ω : LinksK → [ω → K] by

Ω(C , c ,F) : C FC F 2C F 3C · · ·

Ω(D, d ,G) : D GD G 2D G 3D · · ·

Ω(h,η) h

c

η∗h

Fc

η(2)∗h

F 2c

η(3)∗h

F 3c

d Gd G2d G3d

where η(n) = η ∗ · · · ∗ η : F n ⇒ G n for η : F ⇒ G .

10

General Fixed Points

Proposition. GFIX = colim ◦ Ω : LinksK
l.c.−→ K is locally

continuous.

Proposition. UNF(C , c ,F) = F (GFIX(C , c ,F)) extends to a

functor LinksK
l.c.−→ K .

Theorem. There exists a natural isomorphism

fold : UNF⇒ GFIX,

i.e., for all (h, η) : (C , c ,F)→ (D, d ,G),

F (GFIX(C , c ,F)) GFIX(C , c ,F)

G (GFIX(D, d ,G)) GFIX(D, d ,G).

fold(C ,c,F)

UNF(h,η) GFIX(h,η)

fold(D,d,G)

11

General Fixed Points

Proposition. GFIX = colim ◦ Ω : LinksK
l.c.−→ K is locally

continuous.

Proposition. UNF(C , c ,F) = F (GFIX(C , c ,F)) extends to a

functor LinksK
l.c.−→ K .

Theorem. There exists a natural isomorphism

fold : UNF⇒ GFIX,

i.e., for all (h, η) : (C , c ,F)→ (D, d ,G),

F (GFIX(C , c ,F)) GFIX(C , c ,F)

G (GFIX(D, d ,G)) GFIX(D, d ,G).

fold(C ,c,F)

UNF(h,η) GFIX(h,η)

fold(D,d,G)

11

General Fixed Points

Proposition. GFIX = colim ◦ Ω : LinksK
l.c.−→ K is locally

continuous.

Proposition. UNF(C , c ,F) = F (GFIX(C , c ,F)) extends to a

functor LinksK
l.c.−→ K .

Theorem. There exists a natural isomorphism

fold : UNF⇒ GFIX,

i.e., for all (h, η) : (C , c ,F)→ (D, d ,G),

F (GFIX(C , c ,F)) GFIX(C , c ,F)

G (GFIX(D, d ,G)) GFIX(D, d ,G).

fold(C ,c,F)

UNF(h,η) GFIX(h,η)

fold(D,d,G)

11

Parametrized Fixed Points

Remark. The mapping F 7→ (⊥, !,F) embeds the category

[K
l.c.−→ K] of locally continuous functors on K into LinksK .

Corollary. The functor (−)† given by

[D×K l.c.−→ K]
Λ−→ [D

l.c.−→ [K
l.c.−→ K]]

[idD→GFIX(⊥,!,−)]−−−−−−−−−−→ [D
l.c.−→ K]

is locally continuous.

12

Parametrized Fixed Points

Remark. The mapping F 7→ (⊥, !,F) embeds the category

[K
l.c.−→ K] of locally continuous functors on K into LinksK .

Corollary. The functor (−)† given by

[D×K l.c.−→ K]
Λ−→ [D

l.c.−→ [K
l.c.−→ K]]

[idD→GFIX(⊥,!,−)]−−−−−−−−−−→ [D
l.c.−→ K]

is locally continuous.

12

Weak Fixed-Point Identity

Theorem. Let F : D ×K l.c.−→ K . There exists a natural

isomorphism

FoldF : F † ⇒ F ◦ 〈idD ,F
†〉

given by FoldF
D = fold(⊥,!,F (D,−)) : F †D → F (D,F †D).

The definition of Fold is also natural in F .

13

Parameter Identity

Theorem. Let F ,H : D ×K l.c.−→ K and G , I : C
l.c.−→ D.

Set FG = F ◦ (G × id) and analogously for HI . Then

F †G = F † ◦ G
FoldFG = FoldFG .

If φ : F ⇒ H and γ : G ⇒ I , then

(φ ∗ (γ × id))† = φ† ∗ γ : F †G ⇒ H†I .

14

Parameter Identity

Theorem. Let F ,H : D ×K l.c.−→ K and G , I : C
l.c.−→ D.

Set FG = F ◦ (G × id) and analogously for HI . Then

F †G = F † ◦ G
FoldFG = FoldFG .

If φ : F ⇒ H and γ : G ⇒ I , then

(φ ∗ (γ × id))† = φ† ∗ γ : F †G ⇒ H†I .

14

Parametrized Algebras

Let F : D ×K l.c.−→ K .

Definition. An F -algebra is a pair (G , γ) where

G : D
l.c.−→ K and γ : F ◦ 〈id,G 〉 ⇒ G .

Definition. An F -algebra homomorphism (G , γ)→ (H , η)

is a ρ : G ⇒ H such that

F ◦ 〈id,G 〉 G

F ◦ 〈id,H〉 H .

F◦〈id,ρ〉

γ

ρ

η

15

Parametrized Algebras

Let F : D ×K l.c.−→ K .

Definition. An F -algebra is a pair (G , γ) where

G : D
l.c.−→ K and γ : F ◦ 〈id,G 〉 ⇒ G .

Definition. An F -algebra homomorphism (G , γ)→ (H , η)

is a ρ : G ⇒ H such that

F ◦ 〈id,G 〉 G

F ◦ 〈id,H〉 H .

F◦〈id,ρ〉

γ

ρ

η

15

Canonicity of Parametrized Fixed Points

Theorem. Let F : D ×K l.c.−→ K .

� (F †,FoldF) is the initial F -algebra.

Given any other F -algebra (G , γ), the unique morphism

φ : F † ⇒ G is a natural family of embeddings.

�

(
F †,
(
FoldF

)−1
)

is the terminal F -coalgebra.

Given any other F -coalgebra (G , γ), the unique morphism

ρ : G ⇒ F † is a natural family of projections.

16

Revisiting Recursive Session Types

The interpretation

L Ξ ` rec(α.A) M : JΞ ` rec(α.A)K⇒
JΞ ` rec(α.A)K× JΞ ` rec(α.A)K

is given by

〈(π1L Ξ, α ` A M)†, (π2L Ξ, α ` A M)†〉 :

JΞ, α ` AK† ⇒ JΞ, α ` AK† × JΞ, α ` AK†.

It is a natural family of embeddings by the theorem on the

previous slide.

17

Conway Identities

The Conway identities are four identities for dagger

operations useful for semantic reasoning. They include:

1. the parameter identity (naturality):

for all f : B × C → C and g : A→ B ,

(f ◦ (g × idC))† = f † ◦ g .

2. the composition identity (parametrized dinaturality):

for all f : P × A→ B and g : P × B → A,

(g ◦ 〈πP×A
P , f 〉)† = g ◦ 〈idP , (f ◦ 〈πP×B

P , g〉)†〉.

Theorem. The dagger (·)† satisfies the Conway identities.

18

Conway Identities

The Conway identities are four identities for dagger

operations useful for semantic reasoning. They include:

1. the parameter identity (naturality):

for all f : B × C → C and g : A→ B ,

(f ◦ (g × idC))† = f † ◦ g .

2. the composition identity (parametrized dinaturality):

for all f : P × A→ B and g : P × B → A,

(g ◦ 〈πP×A
P , f 〉)† = g ◦ 〈idP , (f ◦ 〈πP×B

P , g〉)†〉.

Theorem. The dagger (·)† satisfies the Conway identities.

18

Conway Identities

The Conway identities are four identities for dagger

operations useful for semantic reasoning. They include:

1. the parameter identity (naturality):

for all f : B × C → C and g : A→ B ,

(f ◦ (g × idC))† = f † ◦ g .

2. the composition identity (parametrized dinaturality):

for all f : P × A→ B and g : P × B → A,

(g ◦ 〈πP×A
P , f 〉)† = g ◦ 〈idP , (f ◦ 〈πP×B

P , g〉)†〉.

Theorem. The dagger (·)† satisfies the Conway identities.

18

Conway Identities: Application

The Conway identities imply:

Corollary (Pairing / Bekič’s Identity). Let

F : A×B × C l.c.−→ B and G : A×B × C l.c.−→ C . Set

H = A×B 〈id,G†〉−−−−→ A×B × C F−→ B.

Then

〈F ,G 〉† = 〈G † ◦ 〈idA,H†〉,H†〉 : A→ B × C .

Application. Interpreting and reasoning about mutually

recursive session types.

19

Conway Identities: Application

The Conway identities imply:

Corollary (Pairing / Bekič’s Identity). Let

F : A×B × C l.c.−→ B and G : A×B × C l.c.−→ C . Set

H = A×B 〈id,G†〉−−−−→ A×B × C F−→ B.

Then

〈F ,G 〉† = 〈G † ◦ 〈idA,H†〉,H†〉 : A→ B × C .

Application. Interpreting and reasoning about mutually

recursive session types.

19

Applications to Session Types

These techniques are key to a domain semantics for

session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.

Has been used to verify, e.g., that:

1. flipping bits in a bit stream twice is the identity

2. process composition is associative

3. large class of η-like properties

20

Applications to Session Types

These techniques are key to a domain semantics for

session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.

Has been used to verify, e.g., that:

1. flipping bits in a bit stream twice is the identity

2. process composition is associative

3. large class of η-like properties

20

Applications to Session Types

These techniques are key to a domain semantics for

session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.

Has been used to verify, e.g., that:

1. flipping bits in a bit stream twice is the identity

2. process composition is associative

3. large class of η-like properties

20

Applications to Session Types

These techniques are key to a domain semantics for

session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.

Has been used to verify, e.g., that:

1. flipping bits in a bit stream twice is the identity

2. process composition is associative

3. large class of η-like properties

20

Applications to Session Types

These techniques are key to a domain semantics for

session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.

Has been used to verify, e.g., that:

1. flipping bits in a bit stream twice is the identity

2. process composition is associative

3. large class of η-like properties

20

Summary

We gave a parametrized fixed-point operator (·)† that is:

� locally continuous;

� satisfies the Conway identities;

� useful for interpreting recursive session types.

21

Related Work i

Abramsky, Samson and Achim Jung.

Domain Theory

Handbook of Logic in Computer Science. Vol 3, 1995.

Bloom, Stephen L. and Zoltán Ésik.

Some Equational Laws of Initiality in 2CCC’s

International Journal of Foundations of Computer Science,

6(2):95-118, 1995.

Fiore, Marcelo P.

Axiomatic Domain Theory in Categories of

Partial Maps

PhD thesis. The University of Edinburgh, 1994.

22

Related Work ii

Lehmann, Daniel J. and Michael B. Smyth.

Algebraic Specification of Data Types:

A Synthetic Approach

Mathematical Systems Theory, 14(1):97-139, 2020.

Smyth, M. B. and G. D. Plotkin.

The Category-Theoretic Solution of

Recursive Domain Equations

SIAM Journal on Computing, 11(4):761–783, 1982.

23

