Some Properties of Parametrized Fixed Points on O-Categories

And Applications to Session Types

Ryan Kavanagh

MFPS XXXVI
Carnegie Mellon University

Session-Typing Communication

Session-Typing Communication

A - communication protocol (session type)

Session-Typing Communication

A - communication protocol (session type)

- internal choice $(A \oplus B)$
- external choice (A \& B)

Session-Typing Communication

A - communication protocol (session type)

- internal choice $(A \oplus B)$
- external choice (A \& B)
- channel transmission $(A \otimes B, A \multimap B)$

Session-Typing Communication

A - communication protocol (session type)

- internal choice $(A \oplus B)$
- external choice (A \& B)
- channel transmission $(A \otimes B, A \multimap B)$
- recursive protocols rec $(\alpha . A)$, etc.

Session-Typing Communication

A - communication protocol (session type)

- internal choice $(A \oplus B)$
- external choice (A \& B)
- channel transmission $(A \otimes B, A \multimap B)$
- recursive protocols rec $(\alpha . A)$, etc.

Session-Typing Communication

A - communication protocol (session type)

$$
\begin{aligned}
& \llbracket C \rrbracket: \llbracket A \rrbracket \rightarrow \llbracket A \rrbracket \\
& \llbracket S \rrbracket: \llbracket A \rrbracket \rightarrow \llbracket A \rrbracket
\end{aligned}
$$

Session-Typing Communication

A - communication protocol (session type)

$$
\begin{gathered}
\llbracket C \rrbracket: \llbracket A \rrbracket \rightarrow \llbracket A \rrbracket \\
\llbracket S \rrbracket: \llbracket A \rrbracket \rightarrow \llbracket A \rrbracket
\end{gathered}
$$

$\llbracket A \rrbracket$ - domain of (bidirectional) communications satisfying A

Session-Typing Communication

A - communication protocol (session type)

$$
\begin{aligned}
& \llbracket C \rrbracket: \llbracket A \rrbracket \rightarrow \llbracket A \rrbracket \\
& \llbracket S \rrbracket: \llbracket A \rrbracket \rightarrow \llbracket A \rrbracket
\end{aligned}
$$

$\llbracket A \rrbracket$ - domain of (bidirectional) communications satisfying A Want an embedding $\llbracket A \rrbracket \rightarrow \llbracket A \rrbracket \times \llbracket A \rrbracket$.

Open Session-Types

Generalize $\llbracket A \rrbracket \rightarrow \llbracket A \rrbracket \times \llbracket A \rrbracket$ to open session types $\equiv \vdash A$:

$$
\begin{aligned}
& D C P O^{\equiv}=\prod_{\alpha \in \Xi} D C P O \\
& \llbracket \equiv \vdash A \rrbracket, \llbracket \equiv \vdash A \rrbracket, \llbracket \equiv \vdash A \rrbracket: D C P O^{\equiv} \xrightarrow{\text { ।.c. }} D C P O
\end{aligned}
$$

Open Session-Types

Generalize $\llbracket A \rrbracket \rightarrow \llbracket A \rrbracket \times \llbracket A \rrbracket$ to open session types $\equiv \vdash A$:

$$
\begin{aligned}
& D C P O^{\equiv}=\prod_{\alpha \in \equiv} D C P O \\
& \llbracket \equiv \vdash A \rrbracket, \llbracket \equiv \vdash A \rrbracket, \llbracket \equiv \vdash A \rrbracket: D C P O^{\equiv} \xrightarrow{\text { ।.c. }} D C P O
\end{aligned}
$$

The embedding becomes a natural transformation:

$$
\bigcirc \equiv \vdash A \downarrow: \llbracket \equiv \vdash A \rrbracket \Rightarrow \llbracket \equiv \vdash A \rrbracket \times \llbracket \equiv \vdash A \rrbracket
$$

where each component of $(\equiv \vdash A)$ is an embedding.

Recursive Session-Types

Recursive session types are formed by the following rule:

$$
\frac{\equiv, \alpha \vdash A}{\equiv \vdash \operatorname{rec}(\alpha . A)}
$$

Recursive Session－Types

Recursive session types are formed by the following rule：

$$
\frac{\equiv, \alpha \vdash A}{\equiv \vdash \operatorname{rec}(\alpha . A)}
$$

Given

$$
(\text { 三, } \alpha \vdash A): \llbracket \text { 三, } \alpha \vdash A \rrbracket \Rightarrow \llbracket \overline{\text { 三 }}, \alpha \vdash A \rrbracket \times \llbracket \overline{\text { 三 }}, \alpha \vdash A \rrbracket \text {, }
$$

how do we define

$$
\begin{aligned}
&(\equiv \vdash \operatorname{rec}(\alpha . A) \downarrow: \llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket \Rightarrow \\
& \llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket \times \llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket ?
\end{aligned}
$$

Recursive Session－Types

Recursive session types are formed by the following rule：

$$
\frac{\equiv, \alpha \vdash A}{\equiv \vdash \operatorname{rec}(\alpha . A)}
$$

Given

$$
(\text { 三, } \alpha \vdash A \emptyset: \llbracket \text { 三, } \alpha \vdash A \rrbracket \Rightarrow \llbracket \text { 三, } \alpha \vdash A \rrbracket \times \llbracket \text { 三, } \alpha \vdash A \rrbracket \text {, }
$$

how do we define

$$
\begin{aligned}
&(\equiv \vdash \operatorname{rec}(\alpha . A) \downarrow: \llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket \Rightarrow \\
& \llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket \times \llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket ?
\end{aligned}
$$

Should respect unfolding，e．g．，

$$
\begin{aligned}
\llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket & \cong \llbracket \equiv \vdash[\operatorname{rec}(\alpha \cdot A) / \alpha] A \rrbracket \\
& =\llbracket \equiv, \alpha \vdash A \rrbracket(-, \llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket)
\end{aligned}
$$

Parametrized Families of Fixed Points

Given $F: \mathbf{D C P} \boldsymbol{O}^{\equiv, \alpha} \rightarrow \boldsymbol{D C P O}$, we can find a parametrized family of fixed points $F^{\dagger}: D C P O^{\equiv} \rightarrow D C P O$ by taking:

$$
F^{\dagger} D=\operatorname{FIX}(F(D,-)) .
$$

Parametrized Families of Fixed Points

Given $F: \boldsymbol{D C P} \boldsymbol{O}^{\equiv, \alpha} \rightarrow \boldsymbol{D C P O}$, we can find a parametrized family of fixed points $F^{\dagger}: D C P O^{\equiv} \rightarrow D C P O$ by taking:

$$
F^{\dagger} D=\operatorname{FIX}(F(D,-)) .
$$

The family satisfies for all D :

$$
F^{\dagger} D \cong F\left(D, F^{\dagger} D\right)
$$

Parametrized Families of Fixed Points

Given $F: \boldsymbol{D C P} \boldsymbol{O}^{\equiv, \alpha} \rightarrow \boldsymbol{D C P O}$, we can find a parametrized family of fixed points $F^{\dagger}: D C P O^{\equiv} \rightarrow D C P O$ by taking:

$$
F^{\dagger} D=\operatorname{FIX}(F(D,-)) .
$$

The family satisfies for all D :

$$
F^{\dagger} D \cong F\left(D, F^{\dagger} D\right)
$$

Example: if $F=\llbracket \equiv, \alpha \vdash A \rrbracket$ and $\llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket=F^{\dagger}$, then

$$
\llbracket \equiv \vdash \operatorname{rec}(\alpha \cdot A) \rrbracket \cong \llbracket \equiv, \alpha \vdash A \rrbracket(-, \llbracket \equiv \vdash \operatorname{rec}(\alpha \cdot A) \rrbracket) .
$$

Interpreting Recursive Session Types

Is this $(\cdot)^{\dagger}$ functorial? Does it preserve embeddings?

Interpreting Recursive Session Types

Is this $(\cdot)^{\dagger}$ functorial? Does it preserve embeddings?
Wrong: Take $(\equiv \vdash \operatorname{rec}(\alpha . A)$) to be

$$
\bigcirc \equiv, \alpha \vdash A)^{\dagger}: \llbracket \equiv, \alpha \vdash A \rrbracket^{\dagger} \Rightarrow(\llbracket \equiv, \alpha \vdash A \rrbracket \times \llbracket \equiv, \alpha \vdash A \rrbracket)^{\dagger} .
$$

Problem: What are $\llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket$ and $\llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket$?
In general, $(F \times G)^{\dagger} \neq F^{\dagger} \times G^{\dagger}$.

This Talk

We give a parametrized fixed-point operator $(\cdot)^{\dagger}$ on
O-categories suitable for interpreting recursive session types.
It is locally continuous and satisfies the Conway identities.

O-Categories and Local Continuity

Definition

An O-category is a category K where every homset $K(C, D)$ is a dcpo, and where composition of morphisms is continuous.

O-Categories and Local Continuity

Definition

An \mathbf{O}-category is a category K where every homset $K(C, D)$ is a dcpo, and where composition of morphisms is continuous.

Definition
A functor $F: \boldsymbol{C} \rightarrow \boldsymbol{D}$ between O-categories is locally continuous if the maps $f \mapsto F f$ are all continuous.

O-Categories and Local Continuity

Definition

An O-category is a category K where every homset $K(C, D)$ is a dcpo, and where composition of morphisms is continuous.

Definition
A functor $F: \boldsymbol{C} \rightarrow \boldsymbol{D}$ between O-categories is locally continuous if the maps $f \mapsto F f$ are all continuous.

Definition
An embedding-projection pair (e-p-pair) is a pair of morphisms $e: A \rightarrow B$ and $p: B \rightarrow A$ such that $p \circ e=\operatorname{id}_{A}$ and $e \circ p \sqsubseteq \mathrm{id}_{B}$.

Canonical Fixed Points

Input: Locally continuous $F: K \rightarrow K$
Output: Object FIX (F) such that $F($ FIX $(F)) \cong \operatorname{FIX}(F)$

Canonical Fixed Points

Input: Locally continuous $F: K \rightarrow K$
Output: Object FIX (F) such that $F(\operatorname{FIX}(F)) \cong \operatorname{FIX}(F)$
Define: $\Omega(F): \omega \rightarrow K$ by

$$
\Omega(F)(n \rightarrow n+1)=F^{n}!: F^{n} \perp \rightarrow F^{n+1} \perp
$$

Canonical Fixed Points

Input: Locally continuous $F: K \rightarrow K$
Output: Object FIX (F) such that $F(\operatorname{FIX}(F)) \cong \operatorname{FIX}(F)$
Define: $\Omega(F): \omega \rightarrow K$ by

$$
\Omega(F)(n \rightarrow n+1)=F^{n}!: F^{n} \perp \rightarrow F^{n+1} \perp .
$$

$\Omega(F): \perp \xrightarrow{!} F \perp$

Canonical Fixed Points

Input: Locally continuous $F: K \rightarrow K$
Output: Object FIX (F) such that $F(\operatorname{FIX}(F)) \cong \operatorname{FIX}(F)$
Define: $\Omega(F): \omega \rightarrow K$ by

$$
\Omega(F)(n \rightarrow n+1)=F^{n}!: F^{n} \perp \rightarrow F^{n+1} \perp .
$$

$\Omega(F): \perp \xrightarrow{!} F \perp \xrightarrow{F!} F^{2} \perp$

Canonical Fixed Points

Input: Locally continuous $F: K \rightarrow K$
Output: Object FIX (F) such that $F(\operatorname{FIX}(F)) \cong \operatorname{FIX}(F)$
Define: $\Omega(F): \omega \rightarrow K$ by

$$
\Omega(F)(n \rightarrow n+1)=F^{n}!: F^{n} \perp \rightarrow F^{n+1} \perp
$$

$\Omega(F): \perp \xrightarrow{!} F \perp \xrightarrow{F!} F^{2} \perp \xrightarrow{F^{2}!} F^{3} \perp$

Canonical Fixed Points

Input: Locally continuous $F: K \rightarrow K$
Output: Object FIX (F) such that $F(\operatorname{FIX}(F)) \cong \operatorname{FIX}(F)$
Define: $\Omega(F): \omega \rightarrow K$ by

$$
\Omega(F)(n \rightarrow n+1)=F^{n}!: F^{n} \perp \rightarrow F^{n+1} \perp
$$

$\Omega(F): \perp \xrightarrow{!} F \perp \xrightarrow{F!} F^{2} \perp \xrightarrow{F^{2}!} F^{3} \perp \xrightarrow{F^{3!}} \cdots$

Canonical Fixed Points

Input: Locally continuous $F: K \rightarrow K$
Output: Object FIX (F) such that $F(\operatorname{FIX}(F)) \cong \operatorname{FIX}(F)$
Define: $\Omega(F): \omega \rightarrow K$ by

$$
\Omega(F)(n \rightarrow n+1)=F^{n}!: F^{n} \perp \rightarrow F^{n+1} \perp
$$

Canonical Fixed Points

Input: Locally continuous $F: K \rightarrow K$
Output: Object FIX (F) such that $F(\operatorname{FIX}(F)) \cong \operatorname{FIX}(F)$
Define: $\Omega(F): \omega \rightarrow K$ by

$$
\Omega(F)(n \rightarrow n+1)=F^{n}!: F^{n} \perp \rightarrow F^{n+1} \perp
$$

Define: $\operatorname{FIX}(F)=\operatorname{colim} \Omega(F)$.

Generalizing Links

Let Links $\boldsymbol{K}_{\boldsymbol{K}}$ be:
Objects: (C, c, F) where $F: K \xrightarrow{\text { l.c. }} K$ and
$c: C \rightarrow F C$ is an embedding;

Generalizing Links

Let Links $\boldsymbol{K}_{\boldsymbol{K}}$ be:
Objects: (C, c, F) where $F: K \xrightarrow{\text { I.c. }} K$ and
$c: C \rightarrow F C$ is an embedding;
Morphisms: $(h, \eta):(C, k, F) \rightarrow(D, d, G)$ is $h: C \rightarrow D$ and (natural) $\eta: F \Rightarrow G$ satisfying

Generalizing Links

Let Links $\boldsymbol{K}_{\boldsymbol{K}}$ be:
Objects: (C, c, F) where $F: K \xrightarrow{\text { I.c. }} K$ and $c: C \rightarrow F C$ is an embedding;
Morphisms: $(h, \eta):(C, k, F) \rightarrow(D, d, G)$ is $h: C \rightarrow D$ and (natural) $\eta: F \Rightarrow G$ satisfying

Write $\eta * h$ for $\eta_{D} \circ F h=G h \circ \eta_{C}$.

Generalizing Chains

Define $\Omega:$ Links $_{K} \rightarrow[\omega \rightarrow K]$ by
$\Omega(C, c, F): C \xrightarrow{c} F C \xrightarrow{F c} F^{2} C \xrightarrow{F^{2} c} F^{3} C \xrightarrow{F^{3} c} \cdots$

Generalizing Chains

Define $\Omega:$ Links $_{K} \rightarrow[\omega \rightarrow K]$ by

$$
\begin{aligned}
& \Omega(C, c, F): C \xrightarrow{c} F C \xrightarrow{F c} F^{2} C \xrightarrow{F^{2} c} F^{3} C \xrightarrow{F^{3} c} \cdots \\
& \| \Omega(h, \eta) \quad \downarrow^{h} \quad \downarrow^{\eta * h} \quad \downarrow^{(2) * h} \quad \downarrow^{\eta^{(3)} * h} \\
& \Omega(D, d, G): D \xrightarrow{d} G D \xrightarrow{G d} G^{2} D \xrightarrow{G^{2} d} G^{3} D \xrightarrow{G^{3} d} \cdots
\end{aligned}
$$

where $\eta^{(n)}=\eta * \cdots * \eta: F^{n} \Rightarrow G^{n}$ for $\eta: F \Rightarrow G$.

General Fixed Points

Proposition. GFIX $=$ colim $\circ \Omega:$ Links $_{K} \xrightarrow{\text { I.c. }} K$ is locally continuous.

General Fixed Points

Proposition. GFIX $=$ colim $\circ \Omega:$ Links $_{K} \xrightarrow{\text { I.c. }} K$ is locally continuous.
Proposition. $\operatorname{UNF}(C, c, F)=F(\operatorname{GFIX}(C, c, F))$ extends to a functor Links ${ }_{K} \xrightarrow{\text { I.c. }} K$.

General Fixed Points

Proposition. GFIX $=$ colim $\circ \Omega:$ Links $K \xrightarrow{\text { I.c. }} K$ is locally continuous.
Proposition. $\operatorname{UNF}(C, c, F)=F(\operatorname{GFIX}(C, c, F))$ extends to a functor Links $K \xrightarrow{\text { I.c. }} K$.

Theorem. There exists a natural isomorphism

$$
\text { fold : UNF } \Rightarrow \text { GFIX, }
$$

$$
\begin{aligned}
& \text { i.e., for all }(h, \eta):(C, c, F) \rightarrow(D, d, G) \text {, } \\
& \begin{array}{c}
\text { F(GFIX }(C, c, F)) \xrightarrow{\text { fold }_{(C, c, F)}} \operatorname{GFIX}(C, c, F) \\
\quad \operatorname{UNF}(h, \eta) \downarrow \\
\operatorname{G}(\operatorname{GFIX}(D, d, G)) \xrightarrow{\downarrow \operatorname{GFIX}(h, \eta)} \\
\end{array}
\end{aligned}
$$

Parametrized Fixed Points

Remark. The mapping $F \mapsto(\perp,!, F)$ embeds the category $[K \xrightarrow{\text { I.c. }} K$] of locally continuous functors on K into Links K.

Parametrized Fixed Points

Remark. The mapping $F \mapsto(\perp,!, F)$ embeds the category $[K \xrightarrow{\text { I.c. }} K]$ of locally continuous functors on K into Links K.
Corollary. The functor $(-)^{\dagger}$ given by
$[\boldsymbol{D} \times \boldsymbol{K} \xrightarrow{\text { I.c. }} K] \xrightarrow{\wedge}[\boldsymbol{D} \xrightarrow{\text { I.c. }}[K \xrightarrow{\text { I.c. }} K]] \xrightarrow{\left.\text { [id } D_{D} \rightarrow \mathrm{GFIX}(\perp,!,-)\right]}[\boldsymbol{D} \xrightarrow{\text { I.c. }} K]$
is locally continuous.

Weak Fixed-Point Identity

Theorem. Let $F: \boldsymbol{D} \times \boldsymbol{K} \xrightarrow{\text { l.c. }} K$. There exists a natural isomorphism

$$
\text { Fold }^{F}: F^{\dagger} \Rightarrow F \circ\left\langle\operatorname{id}_{D}, F^{\dagger}\right\rangle
$$

given by Fold $_{D}^{F}=$ fold $_{(\perp,!, F(D,-))}: F^{\dagger} D \rightarrow F\left(D, F^{\dagger} D\right)$.
The definition of Fold is also natural in F.

Parameter Identity

Theorem. Let $F, H: \boldsymbol{D} \times \boldsymbol{K} \xrightarrow{\text { I.c. }} K$ and $G, I: C \xrightarrow{\text { I.c. }} \boldsymbol{D}$.
Set $F_{G}=F \circ(G \times \mathrm{id})$ and analogously for H_{l}. Then

$$
\begin{aligned}
F_{G}^{\dagger} & =F^{\dagger} \circ G \\
\text { Fold }^{F_{G}} & =\text { Fold }^{F} G .
\end{aligned}
$$

Parameter Identity

Theorem. Let $F, H: \boldsymbol{D} \times \boldsymbol{K} \xrightarrow{\text { l.c. }} \boldsymbol{K}$ and $G, I: C \xrightarrow{\text { I.c. }} \boldsymbol{D}$.
Set $F_{G}=F \circ(G \times \mathrm{id})$ and analogously for H_{l}. Then

$$
\begin{aligned}
F_{G}^{\dagger} & =F^{\dagger} \circ G \\
\text { Fold }^{F_{G}} & =\text { Fold }^{F} G .
\end{aligned}
$$

If $\phi: F \Rightarrow H$ and $\gamma: G \Rightarrow I$, then

$$
(\phi *(\gamma \times \mathrm{id}))^{\dagger}=\phi^{\dagger} * \gamma: F_{G}^{\dagger} \Rightarrow H_{l}^{\dagger}
$$

Parametrized Algebras

Let $F: \boldsymbol{D} \times \boldsymbol{K} \xrightarrow{\text { I.c. }} \boldsymbol{K}$.
Definition. An F-algebra is a pair (G, γ) where $G: D \xrightarrow{\text { l.c. }} K$ and $\gamma: F \circ\langle\mathrm{id}, G\rangle \Rightarrow G$.

Parametrized Algebras

Let $F: \boldsymbol{D} \times \boldsymbol{K} \xrightarrow{\text { I.c. }} K$.
Definition. An F-algebra is a pair (G, γ) where $G: D \xrightarrow{\text { l.c. }} K$ and $\gamma: F \circ\langle\mathrm{id}, G\rangle \Rightarrow G$.

Definition. An F-algebra homomorphism $(G, \gamma) \rightarrow(H, \eta)$ is a $\rho: G \Rightarrow H$ such that

$$
\begin{aligned}
& F \circ\langle\mathrm{id}, G\rangle \xlongequal{\gamma} G \\
&F \circ\langle\mathrm{id}, \rho\rangle\rangle \\
& F \circ\langle\mathrm{id}, H\rangle \xlongequal{\eta} \Downarrow^{\eta} \\
& H
\end{aligned}
$$

Canonicity of Parametrized Fixed Points

Theorem. Let $F: \boldsymbol{D} \times \boldsymbol{K} \xrightarrow{\text { I.c. }} \boldsymbol{K}$.

- $\left(F^{\dagger}\right.$, Fold $\left.{ }^{F}\right)$ is the initial F-algebra.

Given any other F-algebra (G, γ), the unique morphism
$\phi: F^{\dagger} \Rightarrow G$ is a natural family of embeddings.

- $\left(F^{\dagger},\left(\text { Fold }^{F}\right)^{-1}\right)$ is the terminal F-coalgebra.

Given any other F-coalgebra (G, γ), the unique morphism $\rho: G \Rightarrow F^{\dagger}$ is a natural family of projections.

Revisiting Recursive Session Types

The interpretation

$$
\begin{aligned}
&(\equiv \vdash \operatorname{rec}(\alpha . A) \downarrow: \llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket \Rightarrow \\
& \llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket \times \llbracket \equiv \vdash \operatorname{rec}(\alpha . A) \rrbracket
\end{aligned}
$$

is given by

$$
\begin{aligned}
& \left\langle\left(\pi_{1} \ \text { 三, } \alpha \vdash A \emptyset\right)^{\dagger},\left(\pi_{2}(\text { 三, } \alpha \vdash A \backslash)^{\dagger}\right\rangle:\right. \\
& \llbracket \overline{\text { 三 }}, \alpha \vdash A \rrbracket^{\dagger} \Rightarrow \llbracket \overline{\text { 三 }}, \alpha \vdash A \rrbracket^{\dagger} \times \llbracket \overline{\text { 三 }}, \alpha \vdash A \rrbracket^{\dagger} .
\end{aligned}
$$

It is a natural family of embeddings by the theorem on the previous slide．

Conway Identities

The Conway identities are four identities for dagger operations useful for semantic reasoning. They include:

1. the parameter identity (naturality):
for all $f: B \times C \rightarrow C$ and $g: A \rightarrow B$,

$$
\left(f \circ\left(g \times \mathrm{id}_{C}\right)\right)^{\dagger}=f^{\dagger} \circ g
$$

Conway Identities

The Conway identities are four identities for dagger operations useful for semantic reasoning. They include:

1. the parameter identity (naturality):
for all $f: B \times C \rightarrow C$ and $g: A \rightarrow B$,

$$
\left(f \circ\left(g \times \operatorname{id}_{C}\right)\right)^{\dagger}=f^{\dagger} \circ g .
$$

2. the composition identity (parametrized dinaturality): for all $f: P \times A \rightarrow B$ and $g: P \times B \rightarrow A$,

$$
\left(g \circ\left\langle\pi_{P}^{P \times A}, f\right\rangle\right)^{\dagger}=g \circ\left\langle\operatorname{id}_{P},\left(f \circ\left\langle\pi_{P}^{P \times B}, g\right\rangle\right)^{\dagger}\right\rangle .
$$

Conway Identities

The Conway identities are four identities for dagger operations useful for semantic reasoning. They include:

1. the parameter identity (naturality): for all $f: B \times C \rightarrow C$ and $g: A \rightarrow B$,

$$
\left(f \circ\left(g \times \operatorname{id}_{C}\right)\right)^{\dagger}=f^{\dagger} \circ g .
$$

2. the composition identity (parametrized dinaturality):

$$
\begin{aligned}
& \text { for all } f: P \times A \rightarrow B \text { and } g: P \times B \rightarrow A, \\
& \qquad\left(g \circ\left\langle\pi_{P}^{P \times A}, f\right\rangle\right)^{\dagger}=g \circ\left\langle\text { id }_{P},\left(f \circ\left\langle\pi_{P}^{P \times B}, g\right\rangle\right)^{\dagger}\right\rangle .
\end{aligned}
$$

Theorem. The dagger $(\cdot)^{\dagger}$ satisfies the Conway identities.

Conway Identities: Application

The Conway identities imply:
Corollary (Pairing / Bekič's Identity). Let $F: \boldsymbol{A} \times \boldsymbol{B} \times \boldsymbol{C} \xrightarrow{\text { l.c. }} \boldsymbol{B}$ and $G: \boldsymbol{A} \times \boldsymbol{B} \times \boldsymbol{C} \xrightarrow{\text { I.c. }} \boldsymbol{C}$. Set

$$
H=\boldsymbol{A} \times \boldsymbol{B} \xrightarrow{\left\langle\mathrm{id}, G^{\dagger}\right\rangle} \boldsymbol{A} \times \boldsymbol{B} \times \boldsymbol{C} \xrightarrow{F} \boldsymbol{B} .
$$

Then

$$
\langle F, G\rangle^{\dagger}=\left\langle G^{\dagger} \circ\left\langle\mathrm{id}_{\boldsymbol{A}}, H^{\dagger}\right\rangle, H^{\dagger}\right\rangle: \boldsymbol{A} \rightarrow \boldsymbol{B} \times \boldsymbol{C}
$$

Conway Identities: Application

The Conway identities imply:
Corollary (Pairing / Bekič's Identity). Let $F: \boldsymbol{A} \times \boldsymbol{B} \times \boldsymbol{C} \xrightarrow{\text { l.c. }} \boldsymbol{B}$ and $G: \boldsymbol{A} \times \boldsymbol{B} \times \boldsymbol{C} \xrightarrow{\text { I.c. }} \boldsymbol{C}$. Set

$$
H=\boldsymbol{A} \times \boldsymbol{B} \xrightarrow{\left\langle\mathrm{id}, G^{\dagger}\right\rangle} \boldsymbol{A} \times \boldsymbol{B} \times \boldsymbol{C} \xrightarrow{F} \boldsymbol{B} .
$$

Then

$$
\langle F, G\rangle^{\dagger}=\left\langle G^{\dagger} \circ\left\langle\mathrm{id}_{\boldsymbol{A}}, H^{\dagger}\right\rangle, H^{\dagger}\right\rangle: \boldsymbol{A} \rightarrow \boldsymbol{B} \times \boldsymbol{C}
$$

Application. Interpreting and reasoning about mutually recursive session types.

Applications to Session Types

These techniques are key to a domain semantics for session-typed languages with general recursion.

Applications to Session Types

These techniques are key to a domain semantics for session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.

Applications to Session Types

These techniques are key to a domain semantics for session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.
Has been used to verify, e.g., that:

1. flipping bits in a bit stream twice is the identity

Applications to Session Types

These techniques are key to a domain semantics for session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.
Has been used to verify, e.g., that:

1. flipping bits in a bit stream twice is the identity
2. process composition is associative

Applications to Session Types

These techniques are key to a domain semantics for session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.
Has been used to verify, e.g., that:

1. flipping bits in a bit stream twice is the identity
2. process composition is associative
3. large class of η-like properties

Summary

We gave a parametrized fixed-point operator $(\cdot)^{\dagger}$ that is:

- locally continuous;
- satisfies the Conway identities;
- useful for interpreting recursive session types.

Related Work i

圊 Abramsky, Samson and Achim Jung.
Domain Theory
Handbook of Logic in Computer Science. Vol 3, 1995.
圊 Bloom, Stephen L. and Zoltán Ésik.
Some Equational Laws of Initiality in 2CCC's
International Journal of Foundations of Computer Science, 6(2):95-118, 1995.

Eiore, Marcelo P.
Axiomatic Domain Theory in Categories of Partial Maps
PhD thesis. The University of Edinburgh, 1994.

Related Work if

围 Lehmann, Daniel J. and Michael B. Smyth.
Algebraic Specification of Data Types:
A Synthetic Approach
Mathematical Systems Theory, 14(1):97-139, 2020.
Ein Smyth, M. B. and G. D. Plotkin.
The Category-Theoretic Solution of
Recursive Domain Equations
SIAM Journal on Computing, 11(4):761-783, 1982.

