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Session-Typing Communication

C S
A

A

A — communication protocol (session type)

JCK : JAK→ JAK

JSK : JAK→ JAK

JAK — domain of (bidirectional) communications satisfying A

Want an embedding JAK→ JAK× JAK.
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Open Session-Types

Generalize JAK→ JAK× JAK to open session types Ξ ` A:

DCPO
Ξ =

∏
α∈Ξ

DCPO

JΞ ` AK , JΞ ` AK, JΞ ` AK : DCPOΞ l.c.−→ DCPO

The embedding becomes a natural transformation:

L Ξ ` A M : JΞ ` AK⇒ JΞ ` AK× JΞ ` AK

where each component of L Ξ ` A M is an embedding.
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Recursive Session-Types

Recursive session types are formed by the following rule:

Ξ, α ` A

Ξ ` rec(α.A)

Given

L Ξ, α ` A M : JΞ, α ` AK⇒ JΞ, α ` AK× JΞ, α ` AK,

how do we define

L Ξ ` rec(α.A) M : JΞ ` rec(α.A)K⇒
JΞ ` rec(α.A)K× JΞ ` rec(α.A)K?

Should respect unfolding, e.g.,

JΞ ` rec(α.A)K ∼= JΞ ` [rec(α.A)/α]AK

= JΞ, α ` AK (−, JΞ ` rec(α.A)K)

3



Recursive Session-Types

Recursive session types are formed by the following rule:

Ξ, α ` A

Ξ ` rec(α.A)

Given

L Ξ, α ` A M : JΞ, α ` AK⇒ JΞ, α ` AK× JΞ, α ` AK,

how do we define

L Ξ ` rec(α.A) M : JΞ ` rec(α.A)K⇒
JΞ ` rec(α.A)K× JΞ ` rec(α.A)K?

Should respect unfolding, e.g.,

JΞ ` rec(α.A)K ∼= JΞ ` [rec(α.A)/α]AK

= JΞ, α ` AK (−, JΞ ` rec(α.A)K)

3



Recursive Session-Types

Recursive session types are formed by the following rule:

Ξ, α ` A

Ξ ` rec(α.A)

Given

L Ξ, α ` A M : JΞ, α ` AK⇒ JΞ, α ` AK× JΞ, α ` AK,

how do we define

L Ξ ` rec(α.A) M : JΞ ` rec(α.A)K⇒
JΞ ` rec(α.A)K× JΞ ` rec(α.A)K?

Should respect unfolding, e.g.,

JΞ ` rec(α.A)K ∼= JΞ ` [rec(α.A)/α]AK

= JΞ, α ` AK (−, JΞ ` rec(α.A)K)
3



Parametrized Families of Fixed Points

Given F : DCPOΞ,α → DCPO, we can find a parametrized

family of fixed points F † : DCPOΞ → DCPO by taking:

F †D = FIX(F (D,−)).

The family satisfies for all D:

F †D ∼= F (D,F †D)

Example: if F = JΞ, α ` AK and JΞ ` rec(α.A)K = F †, then

JΞ ` rec(α.A)K ∼= JΞ, α ` AK (−, JΞ ` rec(α.A)K).
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Interpreting Recursive Session Types

Is this (·)† functorial? Does it preserve embeddings?

Wrong: Take L Ξ ` rec(α.A) M to be

L Ξ, α ` A M† : JΞ, α ` AK† ⇒ (JΞ, α ` AK× JΞ, α ` AK)† .

Problem: What are JΞ ` rec(α.A)K and JΞ ` rec(α.A)K?

In general, (F × G )† 6∼= F † × G †.
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This Talk

We give a parametrized fixed-point operator (·)† on

O-categories suitable for interpreting recursive session types.

It is locally continuous and satisfies the Conway identities.
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O-Categories and Local Continuity

Definition

An O-category is a category K where every homset K (C ,D)

is a dcpo, and where composition of morphisms is continuous.

Definition

A functor F : C → D between O-categories is

locally continuous if the maps f 7→ Ff are all continuous.

Definition

An embedding-projection pair (e-p-pair) is a pair of

morphisms e : A→ B and p : B → A such that p ◦ e = idA

and e ◦ p v idB .
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Canonical Fixed Points

Input: Locally continuous F : K → K

Output: Object FIX(F ) such that F (FIX(F )) ∼= FIX(F )

Define: Ω(F ) : ω → K by

Ω(F )(n→ n + 1) = F n! : F n⊥ → F n+1⊥.

colim Ω(F )

Ω(F ) : ⊥ F⊥ F 2⊥ F 3⊥ · · ·! F ! F 2! F 3!

Define: FIX(F ) = colim Ω(F ).
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Generalizing Links

Let LinksK be:

Objects: (C , c ,F ) where F : K
l.c.−→ K and

c : C → FC is an embedding;

Morphisms: (h, η) : (C , k ,F )→ (D, d ,G ) is h : C → D and

(natural) η : F ⇒ G satisfying

C FC

FD GC

D GD

h

c

Fh ηC

η∗h

ηD Gh
d

Write η ∗ h for ηD ◦ Fh = Gh ◦ ηC .
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Generalizing Chains

Define Ω : LinksK → [ω → K ] by

Ω(C , c ,F ) : C FC F 2C F 3C · · ·

Ω(D, d ,G ) : D GD G 2D G 3D · · ·

Ω(h,η) h

c

η∗h

Fc

η(2)∗h

F 2c

η(3)∗h

F 3c

d Gd G2d G3d

where η(n) = η ∗ · · · ∗ η : F n ⇒ G n for η : F ⇒ G .
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General Fixed Points

Proposition. GFIX = colim ◦ Ω : LinksK
l.c.−→ K is locally

continuous.

Proposition. UNF(C , c ,F ) = F (GFIX(C , c ,F )) extends to a

functor LinksK
l.c.−→ K .

Theorem. There exists a natural isomorphism

fold : UNF⇒ GFIX,

i.e., for all (h, η) : (C , c ,F )→ (D, d ,G ),

F (GFIX(C , c ,F )) GFIX(C , c ,F )

G (GFIX(D, d ,G )) GFIX(D, d ,G ).

fold(C ,c,F )

UNF(h,η) GFIX(h,η)

fold(D,d,G)
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Parametrized Fixed Points

Remark. The mapping F 7→ (⊥, !,F ) embeds the category

[K
l.c.−→ K ] of locally continuous functors on K into LinksK .

Corollary. The functor (−)† given by

[D×K l.c.−→ K ]
Λ−→ [D

l.c.−→ [K
l.c.−→ K ]]

[idD→GFIX(⊥,!,−)]−−−−−−−−−−→ [D
l.c.−→ K ]

is locally continuous.
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Weak Fixed-Point Identity

Theorem. Let F : D ×K l.c.−→ K . There exists a natural

isomorphism

FoldF : F † ⇒ F ◦ 〈idD ,F
†〉

given by FoldF
D = fold(⊥,!,F (D,−)) : F †D → F (D,F †D).

The definition of Fold is also natural in F .

13



Parameter Identity

Theorem. Let F ,H : D ×K l.c.−→ K and G , I : C
l.c.−→ D.

Set FG = F ◦ (G × id) and analogously for HI . Then

F †G = F † ◦ G
FoldFG = FoldFG .

If φ : F ⇒ H and γ : G ⇒ I , then

(φ ∗ (γ × id))† = φ† ∗ γ : F †G ⇒ H†I .
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Parametrized Algebras

Let F : D ×K l.c.−→ K .

Definition. An F -algebra is a pair (G , γ) where

G : D
l.c.−→ K and γ : F ◦ 〈id,G 〉 ⇒ G .

Definition. An F -algebra homomorphism (G , γ)→ (H , η)

is a ρ : G ⇒ H such that

F ◦ 〈id,G 〉 G

F ◦ 〈id,H〉 H .

F◦〈id,ρ〉

γ

ρ

η

15
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Canonicity of Parametrized Fixed Points

Theorem. Let F : D ×K l.c.−→ K .

� (F †,FoldF ) is the initial F -algebra.

Given any other F -algebra (G , γ), the unique morphism

φ : F † ⇒ G is a natural family of embeddings.

�

(
F †,
(
FoldF

)−1
)

is the terminal F -coalgebra.

Given any other F -coalgebra (G , γ), the unique morphism

ρ : G ⇒ F † is a natural family of projections.
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Revisiting Recursive Session Types

The interpretation

L Ξ ` rec(α.A) M : JΞ ` rec(α.A)K⇒
JΞ ` rec(α.A)K× JΞ ` rec(α.A)K

is given by

〈(π1L Ξ, α ` A M)†, (π2L Ξ, α ` A M)†〉 :

JΞ, α ` AK† ⇒ JΞ, α ` AK† × JΞ, α ` AK†.

It is a natural family of embeddings by the theorem on the

previous slide.

17



Conway Identities

The Conway identities are four identities for dagger

operations useful for semantic reasoning. They include:

1. the parameter identity (naturality):

for all f : B × C → C and g : A→ B ,

(f ◦ (g × idC ))† = f † ◦ g .

2. the composition identity (parametrized dinaturality):

for all f : P × A→ B and g : P × B → A,

(g ◦ 〈πP×A
P , f 〉)† = g ◦ 〈idP , (f ◦ 〈πP×B

P , g〉)†〉.

Theorem. The dagger (·)† satisfies the Conway identities.

18
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Conway Identities: Application

The Conway identities imply:

Corollary (Pairing / Bekič’s Identity). Let

F : A×B × C l.c.−→ B and G : A×B × C l.c.−→ C . Set

H = A×B 〈id,G†〉−−−−→ A×B × C F−→ B.

Then

〈F ,G 〉† = 〈G † ◦ 〈idA,H†〉,H†〉 : A→ B × C .

Application. Interpreting and reasoning about mutually

recursive session types.

19
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Applications to Session Types

These techniques are key to a domain semantics for

session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.

Has been used to verify, e.g., that:

1. flipping bits in a bit stream twice is the identity

2. process composition is associative

3. large class of η-like properties
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Summary

We gave a parametrized fixed-point operator (·)† that is:

� locally continuous;

� satisfies the Conway identities;

� useful for interpreting recursive session types.
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