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A — communication protocol (session type)

[T [A] = [A]
[S] - [A] = [A]

[A] — domain of (bidirectional) communications satisfying A
Want an embedding [A] — [A] x [A].
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Open Session-Types

Generalize [A] — [A] x [A] to open session types = | A:

DCPO~ = H DCPO

a€E=

[E+ Al [E+ Al [E+ Al : DCPO= < DCPO
The embedding becomes a natural transformation:
(ZFA):[ZFA]=[=FA] x[ZF A]

where each component of (= F A)) is an embedding.
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Recursive Session-Types

Recursive session types are formed by the following rule:
=, aFA
=t rec(a.A)

Given
(Z,aFA): [ZaF Al = [=,aF A] x [Z,a F A,

how do we define

(= F rec(a.A)) : [EF rec(a.A)] =

[=F rec(a.A)] x [= F rec(a.A)]?
Should respect unfolding, e.g.,
[= F rec(a.A)] = [= F [rec(a.A)/a]A]
=[=,atF Al (-, [=F rec(a.A)])
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Parametrized Families of Fixed Points

Given F : DCPO~* — DCPO, we can find a parametrized
family of fixed points FT : DCPO= — DCPO by taking:

F'D = FIX(F(D, —)).
The family satisfies for all D:
FTD = F(D, F'D)
Example: if F = [Z,a - A] and [= I rec(a.A)] = FT, then

[ZF rec(a.A)] = [Z,ak Al (-, [Z F rec(a.A)]).
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Interpreting Recursive Session Types

Is this (-)" functorial? Does it preserve embeddings?

Wrong: Take (= rec(a.A)) to be

(Z,aFA)  [Eak A= ([E,aF Al x [Z,aF A]'.

Problem: What are [= - rec(a.A)] and [= F rec(a.A)]?
In general, (F x G)T % FT x GT.



This Talk

We give a parametrized fixed-point operator (-)' on
O-categories suitable for interpreting recursive session types.

It is locally continuous and satisfies the Conway identities.
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O-Categories and Local Continuity

Definition

An O-category is a category K where every homset K(C, D)
is a dcpo, and where composition of morphisms is continuous.
Definition

A functor F : C — D between O-categories is

locally continuous if the maps f — Ff are all continuous.
Definition

An embedding-projection pair (e-p-pair) is a pair of

morphisms e : A— B and p: B — A such that poe =idy
and eo p C idg.
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Canonical Fixed Points

Input: Locally continuous F : K — K

Output: Object FIX(F) such that F(FIX(F)) = FIX(F)

Define: Q(F) :w — K by
QF)n—n+1)=F"l:F"1 — F™1.

colimQ(F

WT\\

QF): L s FlL s F21

Define: FIX(F) = colim Q(F).
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Generalizing Links

Let Linksk be:

Objects: (C,c, F) where F : K L K and
c: C — FC is an embedding;
Morphisms: (h,n): (C,k,F) — (D,d,G)is h: C — D and
(natural) n : F = G satisfying

C ———— FC
Fy yc

h nxh

A

D—2 4 GD
Write 1 % h for np o Fh = Gh o 1.
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Generalizing Chains

Define 2 : Linksx — [w — K] by

Q(ch C —<— FC foy p2c ey p3c ey

Q(h n) h ln*h ln@)*h ln“) xh

Q(D,d,G): D —% 6D % G2p &4, g3p -S4,

~

where (W =px...xn: F"= G"forn: F = G.
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continuous.
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General Fixed Points

Proposition. GFIX = colim o Q : Linksgk L Kis locally
continuous.

Proposition. UNF(C, ¢, F) = F(GFIX(C, ¢, F)) extends to a
functor Linksgk e k.

Theorem. There exists a natural isomorphism

fold : UNF = GFIX,
i.e., for all (h,n): (C,c,F) — (D,d,G),

f0|d(C,c,F

F(GFIX(C,c, F)) — =2 GFIX(C, ¢, F)
UNF(hJ])l lGFIX(h,n)
G(GFIX(D, d, G)) —=2“9, GFIX(D, d, G).
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Remark. The mapping F — (L,!, F) embeds the category
[K Ley K] of locally continuous functors on K into Linksg.
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Parametrized Fixed Points

Remark. The mapping F — (L,!, F) embeds the category
[K Ley K] of locally continuous functors on K into Linksg.

Corollary. The functor (—)' given by

[[dp—GFIX(L,!,—)] [D I_c) K]

[DxK 1% K1 S D 1S [k 15 K]

is locally continuous.
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Weak Fixed-Point Identity

Theorem. Let F : D x K 15 K. There exists a natural
isomorphism
Fold” : FT = F o (idp, FT)

given by Foldf, = fold(1,1,F(p,-)) : FiD — F(D, FTD).
The definition of Fold is also natural in F.

13



Parameter ldentity

Theorem. Let F,H: D x K ' K and G,1: C X% D.
Set Fc = F o (G x id) and analogously for H;. Then

Fl=FoG
Foldf¢ = Fold" G.
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Parameter ldentity

Theorem. Let F,H: D x K ' K and G,1: C X% D.
Set Fc = F o (G x id) and analogously for H;. Then

Fl=FoG
Foldf¢ = Fold" G.

If o: F= Hand~:G =1, then

(p* (v xid) =t xy: FL = H.

14
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Parametrized Algebras

Let F: D x K <5 K.

Definition. An F-algebra is a pair (G, ) where
G:D!% Kandv: Fol(id G) = G.

Definition. An F-algebra homomorphism (G,~) — (H,7n)
isa p: G = H such that

Fo (id, G) ==

G
Fo(id,p}ﬂ ﬂp

F o (id, H) == H.

ii5)



Canonicity of Parametrized Fixed Points

Theorem. Let F: D x K =% K.

e (Ff, Fold") is the initial F-algebra.
Given any other F-algebra (G, ~), the unique morphism
¢ : FT = G is a natural family of embeddings.

° (FT7 (FoIdF)_l) is the terminal F-coalgebra.

Given any other F-coalgebra (G, ), the unique morphism
p: G = FTis a natural family of projections.
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Reuvisiting Recursive Session Types

The interpretation

(= F rec(a.A)) : [EF rec(a.A)] =
[=F rec(a.A)] x [=F rec(a.A)]

is given by

(m(=, a A[))*, (m(=, A[))T> :
[Z,aF Al = [E,aF Al x [Z,a+ A].

It is a natural family of embeddings by the theorem on the
previous slide.
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Conway Identities

The Conway identities are four identities for dagger
operations useful for semantic reasoning. They include:

1. the parameter identity (naturality):
forall f:Bx C— Candg:A— B,

(fo(g x idc))T =flog.
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Conway Identities

The Conway identities are four identities for dagger
operations useful for semantic reasoning. They include:

1. the parameter identity (naturality):
forall f:Bx C— Candg:A— B,

(fo(g x idc))T =flog.

2. the composition identity (parametrized dinaturality):
forall f:PxA—Bandg: P x B — A,

(g o (mp™", )1 = g o (idp, (f o (157, g))').

Theorem. The dagger (-)' satisfies the Conway identities.
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Conway ldentities: Application

The Conway identities imply:

Corollary (Pairing / Bekit’s ldentity). Let
F:AXxBxC 5 Band G:AxBxC % C. Set

= fi e (5 SEE e s @ B e
Then

(F,G) = (G"o (ida, H"),H") : A— B x C.
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Conway ldentities: Application

The Conway identities imply:

Corollary (Pairing / Bekit’s ldentity). Let
F:AXxBxC 5 Band G:AxBxC % C. Set

= fi e (5 SEE e s @ B e
Then

(F,G) = (G"o (ida, H"),H") : A— B x C.

Application. Interpreting and reasoning about mutually
recursive session types.

19
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Applications to Session Types

These techniques are key to a domain semantics for
session-typed languages with general recursion.

Benefit: compositional semantics and program equivalence.

Has been used to verify, e.g., that:

1. flipping bits in a bit stream twice is the identity
2. process composition is associative

3. large class of n-like properties

20



We gave a parametrized fixed-point operator (+)' that is:

e locally continuous;
e satisfies the Conway identities;

e useful for interpreting recursive session types.
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