
A Denotational Semantics for SPARC TSO

Ryan Kavanagh

Stephen Brookes

MFPS XXXIII

Carnegie Mellon University

Funded in part by an NSERC Postgraduate Fellowship

The Dekker Algorithm

Fact
The Dekker algorithm fails to achieve mutual exclusion on

Sun Microsystem’s SPARC architecture.

Example
Starting from initial state σ = [x : 0, y : 0, z : 0,w : 0],

(x := 1; if y = 0 then z := 1) ‖(y := 1; if x = 0 then w := 1)

can reach a final state τ with z = 1 and w = 1.

1

The Implicit Assumption

The Dekker algorithm implicitly assumes sequential consistency,

where
. . . the result of any execution is the same as if the opera-

tions of all the processors were executed in some sequential

order, and the operations of each individual processor ap-

pear in this sequence in the order specified by its program.

— Leslie Lamport, 1979

2

SPARC TSO

Process 1

FIFO

Write

Buffer

�

Shared Memory

Process n

FIFO

Write

Buffer

�

� � �

Writes

Flushes

Reads
Writes

Flushes

Reads

Switch

3

The Problem

How can we give a compositional semantics that exactly captures

the behaviour of the SPARC TSO memory model?

4

Partially-Ordered Multisets

Definition
A pomset on a set L of labels is a triple 〈P, <,Φ〉, where

� P is a set,

� < is a (strict) partial order on P, and

� Φ : P → L is a labelling function.

The set of pomsets over L is Pom(L).

We usually write P instead of 〈P, <,Φ〉, and let <P and ΦP

denote the order and labelling function.

5

Pomsets As DAGs

We can draw pomsets as labelled directed acyclic graphs. We draw

a→ b whenever Φ(p) = a and Φ(q) = b for some p < q.

Example

� P = {0, 1, 2, 3}.
� 0 < 1, 1 < 2, 0 < 2, 0 < 3.

� Φ(0) = a, Φ(1) = b, Φ(2) = a, Φ(3) = c .

a

b c

a

6

Memory Actions

Assume

� a set of locations Loc ranged over by x , y , z ,

� a set of values V = Z ranged over by v , u.

Read actions are x = v for x ∈ Loc and v ∈ V.

Write actions are x := v for x ∈ Loc and v ∈ V.

The skip action is δ.

These collectively form the set APO of program order actions,

ranged over by λ.

7

Program Orders

Definition
A pomset P satisfies the (locally) finite height property if for all

b ∈ P, {a ∈ P | a < b} is finite.

Definition
A program order pomset is a pomset over the set of labels APO

satisfying the finite height property.

8

TSO (Axiomatically)

TSO-consistency

Definition
Given a program order pomset P, a strict partial order <T on P is

TSO-consistent with P from an initial state σ : Loc ⇀fin V if it

satisfies six axioms, including:

(O)rdering: <T is a total order on the write actions of P.

(S)toreStore: for all writes w ,w ′ ∈ P, w <P w ′ implies w <T w ′

(F)ork: if

λ1

λ2 λ3 in <P , then

λ1

λ2 λ3 in <T .

9

TSO (Denotationally)

Three Ingredients

1. TSO pomsets

2. Pomset executions

3. Soundness and completeness

10

A Simple Imperative Language

We restrict our attention to the following simple imperative

language:

v ::= . . . ,−2,−1, 0, 1, 2, . . .

e ::= v | x | e1 + e2 | e1 ∗ e2 | · · ·
b ::= true | false | ¬b | e1 = e2 | e1 < e2 | b1 ∨ b2 | b1 ∧ b2 | · · ·
c ::= skip | x := e | c1; c2 | c1 ‖ c2 | if b then c1 else c2 | while b do c

p ::= c

11

TSO Pomsets

Goal
To assign to each expression a set of “TSO pomsets” denoting its

possible TSO executions.

12

Buffers

Introduce a new set BLoc = {x̄ | x ∈ Loc} of buffer locations.

A buffer write action is an action x̄ := v .

A write buffer is a list L of write actions x := v , with the front of

the queue at the head of the list. We let Ls be the set of all write

buffers.

13

TSO Pomsets

Definition
A TSO pomset is a pomset over the set of labels

ATSO = {δ, x := v , x̄ := v , x = v | x ∈ Loc, v ∈ V}
satisfying the finite height property.

14

Combining Pomsets

The parallel composition P1 ‖P2 of pomsets
P1 and

P2 is

P1 P2 .

Definition (Formally)
The parallel composition 〈P0, <0,Φ0〉 ‖〈P1, <1,Φ1〉 is

〈{0} × P0 ∪ {1} × P1, <,Φ〉, where (i , p) < (j , q) if and only if

i = j and p <i q, and Φ(i , p) = Φi (p).

15

Combining Pomsets

The sequential composition P1;P2 of pomsets
P1 and

P2 is

P1

P2

if
P1 is finite, and it is

P1 if
P1 is infinite.

Definition (Formally)
The sequential composition 〈P0, <0,Φ0〉; 〈P1, <1,Φ1〉 when P0 is

finite is 〈{0} × P0 ∪ {1} × P1, <,Φ〉, where (i , p) < (j , q) if and

only if i = j and p <i q, or i = 0 and j = 1, and Φ(i , p) = Φi (p).

When P0 is infinite, 〈P0, <0,Φ0〉; 〈P1, <1,Φ1〉 is 〈P0, <0,Φ0〉.

16

Generating Sets of Pomsets

Three types of semantic clauses, given a write buffer L ∈ Ls:

Buffer Flushes. split(L) ⊆ Pom(ATSO)× Ls.

Expressions. Given an expression e,

PL(e) ⊆ Pom(ATSO)× V × Ls.

Commands. Given a command c , PL(c) ⊆ Pom(ATSO)× Ls.

17

Pomsets for Commands

PL(c) is recursively defined on the structure of c .

� If (P1, v ,B1) ∈ PL(e) and (F2,B2) ∈ split(B1; {x := v}),

then (P1; {x̄ := v};F2,B2) ∈ PL(x := e).

� If (P1,B1) ∈ PL(c1) and (P2,B2) ∈ PB1(c2),

then (P1;P2,B2) ∈ PL(c1; c2).

� If (Pi , []) ∈ P[](ci) for i = 1, 2,

then (L; (P1 ‖P2), []) ∈ PL(c1 ‖ c2).

Semantic clauses for conditionals, loops, etc., can be found in the

paper.

18

Pomsets for Dekker

Let c be (x :=1; if y=0 then z :=1) ‖(y :=1; if x=0 then w :=1).

The pair (P, []) can be found in P[](c) for each P below and each

choice u, v ∈ V.

x̄ := 1 ȳ := 1

y = 0 x = 0

z̄ := 1 w̄ := 1

x := 1 y := 1

z := 1 w := 1

x̄ := 1 ȳ := 1

x := 1 y := 1

y = v x = u

19

Executing Pomsets

P 7→ {(σ, τ)}

20

Buffered States

Definition
A buffered state is an element of

Σ = (BLoc ⇀fin (V × N)/≈)× (Loc ⇀fin V),

where ≈ is the least equivalence relation on V × N generated by

(v , 0) ≈ (v ′, 0) for all v , v ′ ∈ V.

We let σ, τ range over states, and we identify Σ with its inclusion

in (BLoc ∪ Loc) ⇀fin (V ∪ (V × N)/≈).

Write vn for the equivalence class of (v , n) under ≈.

21

Footprints

Definition
Given an action λ, its TSO footprint JλK ⊆ Σ× Σ is:

Jx̄ := vK = {([x̄ : v ′n], [x̄ : vn+1]) | v ′ ∈ V ∧ n ∈ N}
Jx := vK = {([x : v ′, x̄ : v ′′n+1], [x : v , x̄ : v ′′n]) | v ′, v ′′ ∈ V ∧ n ∈ N}
Jx = vK = {([x : v , x̄ : v ′0], []), ([x̄ : v ′n+1], []) | v ′ ∈ V ∧ n ∈ N}

JδK = {([], [])}

22

Sequencing Footprints

Definition
Sequencing two sets S1,S2 ⊆ Σ× Σ is the associative operation

S1CS2 = {(σ1∪σ2�dom(σ2)\dom(τ1), [τ1 | τ2]) | (σi , τi) ∈ Si , [σ1 | τ1] ⇑ σ2},

where σ ⇑ τ if σ(x) = τ(x) for all x ∈ dom(σ) ∩ dom(τ),

and [σ | τ] (x) =

τ(x) if x ∈ dom(τ)

σ(x) if x ∈ dom(σ) \ dom(τ).

23

“Remote” Global Writes

Definition
The footprint of a sequence of remote global writes L ∈ Ls is

inductively defined as

J [] K∗ = {([], [])}
Jx := v :: LK∗ = {([x : v ′], [x : v]) | v ′ ∈ V } / JLK∗

Note that remote global writes don’t affect buffers! Contrast this

with the footprint of a global write action

Jx := vK = {([x : v ′, x̄ : v ′′n+1], [x : v , x̄ : v ′′n]) | v ′, v ′′ ∈ V ∧ n ∈ N}.

24

Pomset Footprints

Definition
A remote global-write environment for a TSO pomset P is a

Λ ∈ {Lin(P ‖ L) | L ∈ Ls}.

Definition
The footprint JPKΛ of a pomset P in the presence of Λ is

inductively defined by three rules: (Act) for P = {λ}, (Seq) for

P = P1;P2, and (Par) for P = P1 ‖P2.

25

Pomset Footprints, (Act) and (Seq)

(Act) If P = {λ} for some action λ, and Λ = Λ1;P; Λ2 for some

Λi ∈ Ls, then JPKΛ = JΛ1K∗ / JλK / JΛ2K∗.

(Seq) If P = P1;P2 and Λ = Λ1; Λ2, then JP1KΛ1 / JP2KΛ2 ⊆ JPKΛ.

26

Executions

Definition
The set of executions of a TSO pomset P is

E(P) = {(σ, [σ | τ]) | ∃Λ ∈ Lin(P).(σ′, τ) ∈ JPKΛ, σ
′ ⊆ σ}.

27

Sanity Check

Does our semantics truly capture TSO?

28

Key Observations

Theorem
Every <T TSO-consistent with a program order P is contained in

a total order @ TSO-consistent with P.

29

Soundness

We can define sets program order pomsets PPO(c) ⊆ Pom(APO)

for a command c in a way analogous to TSO pomsets.

Definition
A function f : Pom(APO)→ ℘(APO list) is sound when for every

program p and finite pomset P ∈ PPO(p), if L ∈ f (P), then L is

TSO-consistent with P.

30

Soundness (continued)

We can define a function U : Pom(ATSO)→ Pom(APO) taking

every TSO pomset to its underlying program order pomset.

Let

T (P) =
⋃

P′∈U−1(P)

{Λ�APO
| Λ ∈ Lin(P ′) ∧ JP ′KΛ 6= ∅}.

Informally, T (P) captures the linearisations of TSO pomsets in

U−1(P) that give rise to TSO executions.

Theorem
The function T is sound.

31

Completeness

Definition
A function f : Pom(APO)→ ℘(APO list) is complete when for

every program p and finite pomset P ∈ PPO(p), if L is

TSO-consistent with P, then L ∈ f (P).

Theorem
The function T is complete.

32

The Takeaway

Our work provides:

1. an axiomatisation of SPARC TSO;

2. a compositional denotational semantics for SPARC TSO;

3. a notion of pomset execution using buffered states; and

4. a precise correspondence between the axiomatic and

denotational accounts.

33

(Act) example

(Act) If P = {λ} for some action λ, and Λ = Λ1;P; Λ2 for some

Λi ∈ Ls, then JPKΛ = JΛ1K∗ / JλK / JΛ2K∗.

Example. Λ = [x := 3, x̄ := 2], P = {x̄ := 2}.

JPKΛ = J[x := 3]K∗ / Jx̄ := 2K / J[]K∗

= J[x := 3]K∗ / Jx̄ := 2K / {([], [])}
= {([x : v], [x : 3]) | v ∈ V} / {([x̄ : vn], [x̄ : 2n+1]) | v ∈ V, n ∈ N}
= {([x : v , x̄ : v ′n], [x : 3, x̄ : 2n+1]) | v , v ′ ∈ V, n ∈ N}.

Pomset Footprints, (Par)

Let ζ(σ) if and only if for all x ∈ dom(σ�BLoc), σ(x) = v0.

(Par) If P = P1 ‖P2, Λ1 is the result of deleting the read and

buffer write actions of P2 from Λ, Λ2 is the symmetric restriction,

(σi , τi) ∈ JPiKΛi
, ζ(σi), ζ(τi) (i = 1, 2), and σ1 ⇑ σ2, then

(σ1 ∪ σ2, τ1 ∪ τ2) ∈ JPKΛ.

Reminder: σ ⇑ τ iff for all x ∈ dom(σ) ∩ dom(τ), σ(x) = τ(x).

	TSO (Axiomatically)
	TSO (Denotationally)
	Appendix

