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The Dekker Algorithm

Fact
The Dekker algorithm fails to achieve mutual exclusion on

Sun Microsystem’s SPARC architecture.

Example
Starting from initial state σ = [x : 0, y : 0, z : 0,w : 0],

(x := 1; if y = 0 then z := 1) ‖(y := 1; if x = 0 then w := 1)

can reach a final state τ with z = 1 and w = 1.
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The Implicit Assumption

The Dekker algorithm implicitly assumes sequential consistency,

where
. . . the result of any execution is the same as if the opera-

tions of all the processors were executed in some sequential

order, and the operations of each individual processor ap-

pear in this sequence in the order specified by its program.

— Leslie Lamport, 1979
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SPARC TSO
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The Problem

How can we give a compositional semantics that exactly captures

the behaviour of the SPARC TSO memory model?
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Partially-Ordered Multisets

Definition
A pomset on a set L of labels is a triple 〈P, <,Φ〉, where

� P is a set,

� < is a (strict) partial order on P, and

� Φ : P → L is a labelling function.

The set of pomsets over L is Pom(L).

We usually write P instead of 〈P, <,Φ〉, and let <P and ΦP

denote the order and labelling function.
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Pomsets As DAGs

We can draw pomsets as labelled directed acyclic graphs. We draw

a→ b whenever Φ(p) = a and Φ(q) = b for some p < q.

Example

� P = {0, 1, 2, 3}.
� 0 < 1, 1 < 2, 0 < 2, 0 < 3.

� Φ(0) = a, Φ(1) = b, Φ(2) = a, Φ(3) = c .

a

b c

a
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Memory Actions

Assume

� a set of locations Loc ranged over by x , y , z , . . . .

� a set of values V = Z ranged over by v , u.

Read actions are x = v for x ∈ Loc and v ∈ V.

Write actions are x := v for x ∈ Loc and v ∈ V.

The skip action is δ.

These collectively form the set APO of program order actions,

ranged over by λ.
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Program Orders

Definition
A pomset P satisfies the (locally) finite height property if for all

b ∈ P, {a ∈ P | a < b} is finite.

Definition
A program order pomset is a pomset over the set of labels APO

satisfying the finite height property.
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TSO (Axiomatically)



TSO-consistency

Definition
Given a program order pomset P, a strict partial order <T on P is

TSO-consistent with P from an initial state σ : Loc ⇀fin V if it

satisfies six axioms, including:

(O)rdering: <T is a total order on the write actions of P.

(S)toreStore: for all writes w ,w ′ ∈ P, w <P w ′ implies w <T w ′

(F)ork: if

λ1

λ2 λ3 in <P , then

λ1

λ2 λ3 in <T .
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TSO (Denotationally)



Three Ingredients

1. TSO pomsets

2. Pomset executions

3. Soundness and completeness
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A Simple Imperative Language

We restrict our attention to the following simple imperative

language:

v ::= . . . ,−2,−1, 0, 1, 2, . . .

e ::= v | x | e1 + e2 | e1 ∗ e2 | · · ·
b ::= true | false | ¬b | e1 = e2 | e1 < e2 | b1 ∨ b2 | b1 ∧ b2 | · · ·
c ::= skip | x := e | c1; c2 | c1 ‖ c2 | if b then c1 else c2 | while b do c

p ::= c
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TSO Pomsets

Goal
To assign to each expression a set of “TSO pomsets” denoting its

possible TSO executions.
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Buffers

Introduce a new set BLoc = {x̄ | x ∈ Loc} of buffer locations.

A buffer write action is an action x̄ := v .

A write buffer is a list L of write actions x := v , with the front of

the queue at the head of the list. We let Ls be the set of all write

buffers.
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TSO Pomsets

Definition
A TSO pomset is a pomset over the set of labels

ATSO = {δ, x := v , x̄ := v , x = v | x ∈ Loc, v ∈ V}
satisfying the finite height property.
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Combining Pomsets

The parallel composition P1 ‖P2 of pomsets
P1 and

P2 is

P1 P2 .

Definition (Formally)
The parallel composition 〈P0, <0,Φ0〉 ‖〈P1, <1,Φ1〉 is

〈{0} × P0 ∪ {1} × P1, <,Φ〉, where (i , p) < (j , q) if and only if

i = j and p <i q, and Φ(i , p) = Φi (p).
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Combining Pomsets

The sequential composition P1;P2 of pomsets
P1 and

P2 is

P1

P2

if
P1 is finite, and it is

P1 if
P1 is infinite.

Definition (Formally)
The sequential composition 〈P0, <0,Φ0〉; 〈P1, <1,Φ1〉 when P0 is

finite is 〈{0} × P0 ∪ {1} × P1, <,Φ〉, where (i , p) < (j , q) if and

only if i = j and p <i q, or i = 0 and j = 1, and Φ(i , p) = Φi (p).

When P0 is infinite, 〈P0, <0,Φ0〉; 〈P1, <1,Φ1〉 is 〈P0, <0,Φ0〉.
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Generating Sets of Pomsets

Three types of semantic clauses, given a write buffer L ∈ Ls:

Buffer Flushes. split(L) ⊆ Pom(ATSO)× Ls.

Expressions. Given an expression e,

PL(e) ⊆ Pom(ATSO)× V × Ls.

Commands. Given a command c , PL(c) ⊆ Pom(ATSO)× Ls.
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Pomsets for Commands

PL(c) is recursively defined on the structure of c .

� If (P1, v ,B1) ∈ PL(e) and (F2,B2) ∈ split(B1; {x := v}),

then (P1; {x̄ := v};F2,B2) ∈ PL(x := e).

� If (P1,B1) ∈ PL(c1) and (P2,B2) ∈ PB1(c2),

then (P1;P2,B2) ∈ PL(c1; c2).

� If (Pi , [ ]) ∈ P[ ](ci ) for i = 1, 2,

then (L; (P1 ‖P2), [ ]) ∈ PL(c1 ‖ c2).

Semantic clauses for conditionals, loops, etc., can be found in the

paper.
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Pomsets for Dekker

Let c be (x :=1; if y=0 then z :=1) ‖(y :=1; if x=0 then w :=1).

The pair (P, [ ]) can be found in P[ ](c) for each P below and each

choice u, v ∈ V.

x̄ := 1 ȳ := 1

y = 0 x = 0

z̄ := 1 w̄ := 1

x := 1 y := 1

z := 1 w := 1

x̄ := 1 ȳ := 1

x := 1 y := 1

y = v x = u
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Executing Pomsets

P 7→ {(σ, τ )}
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Buffered States

Definition
A buffered state is an element of

Σ = (BLoc ⇀fin (V × N)/≈)× (Loc ⇀fin V),

where ≈ is the least equivalence relation on V × N generated by

(v , 0) ≈ (v ′, 0) for all v , v ′ ∈ V.

We let σ, τ range over states, and we identify Σ with its inclusion

in (BLoc ∪ Loc) ⇀fin (V ∪ (V × N)/≈).

Write vn for the equivalence class of (v , n) under ≈.

21



Footprints

Definition
Given an action λ, its TSO footprint JλK ⊆ Σ× Σ is:

Jx̄ := vK = {([x̄ : v ′n], [x̄ : vn+1]) | v ′ ∈ V ∧ n ∈ N}
Jx := vK = {([x : v ′, x̄ : v ′′n+1], [x : v , x̄ : v ′′n ]) | v ′, v ′′ ∈ V ∧ n ∈ N}
Jx = vK = {([x : v , x̄ : v ′0], [ ]), ([x̄ : v ′n+1], [ ]) | v ′ ∈ V ∧ n ∈ N}

JδK = {([ ], [ ])}
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Sequencing Footprints

Definition
Sequencing two sets S1,S2 ⊆ Σ× Σ is the associative operation

S1CS2 = {(σ1∪σ2�dom(σ2)\dom(τ1), [τ1 | τ2]) | (σi , τi ) ∈ Si , [σ1 | τ1] ⇑ σ2},

where σ ⇑ τ if σ(x) = τ(x) for all x ∈ dom(σ) ∩ dom(τ),

and [σ | τ ] (x) =

τ(x) if x ∈ dom(τ)

σ(x) if x ∈ dom(σ) \ dom(τ).
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“Remote” Global Writes

Definition
The footprint of a sequence of remote global writes L ∈ Ls is

inductively defined as

J [ ] K∗ = {([ ], [ ])}
Jx := v :: LK∗ = {([x : v ′], [x : v ]) | v ′ ∈ V } / JLK∗

Note that remote global writes don’t affect buffers! Contrast this

with the footprint of a global write action

Jx := vK = {([x : v ′, x̄ : v ′′n+1], [x : v , x̄ : v ′′n ]) | v ′, v ′′ ∈ V ∧ n ∈ N}.

24



Pomset Footprints

Definition
A remote global-write environment for a TSO pomset P is a

Λ ∈ {Lin(P ‖ L) | L ∈ Ls}.

Definition
The footprint JPKΛ of a pomset P in the presence of Λ is

inductively defined by three rules: (Act) for P = {λ}, (Seq) for

P = P1;P2, and (Par) for P = P1 ‖P2.
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Pomset Footprints, (Act) and (Seq)

(Act) If P = {λ} for some action λ, and Λ = Λ1;P; Λ2 for some

Λi ∈ Ls, then JPKΛ = JΛ1K∗ / JλK / JΛ2K∗.

(Seq) If P = P1;P2 and Λ = Λ1; Λ2, then JP1KΛ1 / JP2KΛ2 ⊆ JPKΛ.

26



Executions

Definition
The set of executions of a TSO pomset P is

E(P) = {(σ, [σ | τ ]) | ∃Λ ∈ Lin(P).(σ′, τ) ∈ JPKΛ, σ
′ ⊆ σ}.
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Sanity Check

Does our semantics truly capture TSO?
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Key Observations

Theorem
Every <T TSO-consistent with a program order P is contained in

a total order @ TSO-consistent with P.
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Soundness

We can define sets program order pomsets PPO(c) ⊆ Pom(APO)

for a command c in a way analogous to TSO pomsets.

Definition
A function f : Pom(APO)→ ℘(APO list) is sound when for every

program p and finite pomset P ∈ PPO(p), if L ∈ f (P), then L is

TSO-consistent with P.
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Soundness (continued)

We can define a function U : Pom(ATSO)→ Pom(APO) taking

every TSO pomset to its underlying program order pomset.

Let

T (P) =
⋃

P′∈U−1(P)

{Λ�APO
| Λ ∈ Lin(P ′) ∧ JP ′KΛ 6= ∅}.

Informally, T (P) captures the linearisations of TSO pomsets in

U−1(P) that give rise to TSO executions.

Theorem
The function T is sound.
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Completeness

Definition
A function f : Pom(APO)→ ℘(APO list) is complete when for

every program p and finite pomset P ∈ PPO(p), if L is

TSO-consistent with P, then L ∈ f (P).

Theorem
The function T is complete.
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The Takeaway

Our work provides:

1. an axiomatisation of SPARC TSO;

2. a compositional denotational semantics for SPARC TSO;

3. a notion of pomset execution using buffered states; and

4. a precise correspondence between the axiomatic and

denotational accounts.
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(Act) example

(Act) If P = {λ} for some action λ, and Λ = Λ1;P; Λ2 for some

Λi ∈ Ls, then JPKΛ = JΛ1K∗ / JλK / JΛ2K∗.

Example. Λ = [x := 3, x̄ := 2], P = {x̄ := 2}.

JPKΛ = J[x := 3]K∗ / Jx̄ := 2K / J[ ]K∗

= J[x := 3]K∗ / Jx̄ := 2K / {([ ], [ ])}
= {([x : v ], [x : 3]) | v ∈ V} / {([x̄ : vn], [x̄ : 2n+1]) | v ∈ V, n ∈ N}
= {([x : v , x̄ : v ′n], [x : 3, x̄ : 2n+1]) | v , v ′ ∈ V, n ∈ N}.



Pomset Footprints, (Par)

Let ζ(σ) if and only if for all x ∈ dom(σ�BLoc), σ(x) = v0.

(Par) If P = P1 ‖P2, Λ1 is the result of deleting the read and

buffer write actions of P2 from Λ, Λ2 is the symmetric restriction,

(σi , τi ) ∈ JPiKΛi
, ζ(σi ), ζ(τi ) (i = 1, 2), and σ1 ⇑ σ2, then

(σ1 ∪ σ2, τ1 ∪ τ2) ∈ JPKΛ.

Reminder: σ ⇑ τ iff for all x ∈ dom(σ) ∩ dom(τ), σ(x) = τ(x).
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