
ON IRREDUCIBLE RATIONAL QUINTICS

RYAN KAVANAGH

Abstract. In this survey paper, we present a classiûcation of irreducible
quintics in Q[x] and provide a procedure for solving quintics in Bring-
Jerrard form that are irreducible over Q by radicals. hese results are
applied to several original examples.

1. Introduction

In 1823, Abel [Abe24] (see also [Abe39, pp. 21–24; Rot98, heorem 75])
showed that there exists a quintic polynomial over Q that is not solvable
by radicals, a theorem partially proven by Ruõni in 1799 [Ruf99a; Ruf99b]
and now known as the Abel-Ruõni theorem. Moreover, we know by Galois’
theorem [Rot98,heorem 98] that a polynomial overQ is solvable by radicals
if and only if its Galois group is solvable. hus, a desire to solve quintics that
are irreducible over Q by radicals leads to the following motivating question:

Question. How can we characterize the Galois group of a quintic irreducible
over Q?

Considerable work has been done on classifying the Galois group of quin-
tics irreducible over Q, and the task of ûnding roots of quintics that are
solvable by radicals has been one of great interest in the history of math-
ematics. In 1858, Hermite [Her58] solved irreducible rational quintics in
Bring-Jerrard form using Jacobi theta functions. he 1880s then saw a �urry
of work surrounding quintics, with Young [You83], McClintock [McC83],
Glashan [Gla85], Young [You85] andMcClintock [McC85] providing criterion
for their solvability by radicals and procedures for ûnding the roots of solvable
quintics. In 1898, Weber presented necessary and suõcient conditions for the
solvability of irreducible rational quintics in Bring-Jerrard form by radicals
in Lehrbuch der Algebra [Web98a, §196] (see also Traité d’algèbre supérieure

[Web98b, §196]), while half a century later, in 1948, Watson gave a lecture at
the University of Cambridge describing a procedure for solving any solvable
irreducible rational quintic polynomial by radicals [BSW02]. More recently,
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Dummit [Dum91] provided closed formulas for the roots of any irreducible
solvable quintic in Q[x].

Our classiûcation of the Galois groups of irreducible quintics is in terms
of a decic resolvent ûrst announced by Jensen and Yui [JY80] and studied in
detail in [JY82], and it makes use of the geometry of K5, the complete graph
on 5 vertices. A�er covering some preliminaries in section 2, we present
our classiûcation theorem, Weber’s theorem, and several other classiûcation
criterion in section 3. We present in section 4 a method by Spearman and
Williams [SW94] for solving solvable quintics in Bring-Jerrard form by radi-
cals, and we conclude by applying our classiûcation theorems and the method
from section 4 to several examples in section 5.

2. Preliminaries

We begin by establishing some preliminary deûnitions and results used
later in the study of irreducible rational quintics.

Deûnition 1. Let f (x) = x5+ c4x4+ c3x3+ c2x2+ c1x + c0 ∈ Q[x] be a rational
quintic. hen f (x) is in Bring-Jerrard form if c4 = c3 = c2 = 0, that’s to say, if
f (x) = x5 + ax + b ∈ Q[x] for some a, b ∈ Q.

It was shown by Bring in 1786 (see [Har64] for a translation from the
original Latin) and again by Jerrard in 1832 (see [Jer35a; Jer35b]) that any
general quintic may be transformed into Bring-Jerrard form; for a modern
discussion of their results and of how to transform any general quintic into
Bring-Jerrard form, the reader is referred to [AJ03]. Quintic polynomials in
Bring-Jerrard form are of interest because they have the following pleasant
property, which is immediate from the resultant of their Sylvester matrix:

Proposition 1. If f (x) = x5 + ax + b ∈ Q[x] is a quintic in Bring-Jerrard form,

then its discriminant is given by Disc( f ) = 44a5 + 55b4.

Finally, in classifying the Galois groups of irreducible rational quintics, we
will make extensive use of [Art07, Lemma 7.10]:

Lemma 1. here is a one-to-one correspondence between the irreducible factors

of a separable polynomial f (x) over its base ûeld and the orbits of its Galois

group acting on its roots.

Proof. Let f (x) ∈ K[x],M/K be its splitting ûeld, and p(x) = (x − α1)⋯(x −
αn) ∈ M[x] be one of its irreducible factors in K[x]. hen for all σ ∈
Gal( f /K) and all 1 ≤ i ≤ n, p(αi) = 0 implies p(σ(αi)) = 0. hus σ(αi) is
one of α1, . . . , αn, and since p(x) is the minimal polynomial of αi over K,
this implies that αi has exactly n distinct images under Gal( f /K), namely,
α1, . . . , αn. hus we see that p(x) uniquely determines the orbits of α1, . . . , αn.

�
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Corollary 1 (of proof). he size of the orbit of a root is the the degree of its

associated irreducible factor.

3. Classifying Galois Groups of Irreducible Quintics

To help classify the Galois group of irreducible rational quintics, we in-
troduce the following decic resolvent by Jensen and Yui [JY80; JY82] whose
value will soon become apparent:

Deûnition 2. Let α1, . . . , α5 be the roots of amonic irreducible quintic f (x) ∈
Q[x] and let

(1) P10(x) = ∏
1≤i< j≤5

(x − (αi + α j)).

hen we call P10(x) the decic resolvent of f (x).

he following theorem shows that P10(x) and f (x) have the same Galois
group. his resolvent is useful in classifying the Galois groups of irreducible
rational quintics in that we can easily determine the Galois group of P10(x)
by observing its action on the complete graph on 5 vertices, K5, where we
identify the root (αi + α j) of P10(x) with the edge αiα j of K5 (see Figure 1).

α1

α2

α3α4

α5

Figure 1. he complete graph on 5 vertices K5

heorem 1. he resolvent P10(x) is a separable polynomial overQwhose Galois

group is isomorphic to that of the irreducible quintic that induced it.

Proof. here are three things to show:
(1) P10(x) ∈ Q[x];
(2) P10(x) is separable; and
(3) P10(x) and f (x) have the same splitting ûeld.
First, let G = Gal(P10/Q). hen for any σ ∈ G, we clearly have σ(P10(x)) =

∏1≤i< j≤5(x − σ(αi + α j)) = P10(x) since P10(x) already contains all possible
sums of pairs of roots of f (x) as roots and σ is an automorphism. hus, σ
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ûxes P10(x)’s coeõcients, and so they must lie in Q. So P10(x) ∈ Q[x] as
desired.

We now show that P10(x) is separable; it suõces to show that the sums of
pairs of roots αi+α j for i ≠ j are pairwise distinct. We present a specialization
of the general proof by G. A. Elliot in [JY82, Lemma II.1.1]. Let f /Q be the
splitting ûeld of f (x) over Q, let V be the subspace V of f /Q given by

V = Qα1 +Qα2 +⋯ +Qα5,

and consider theC-vector spaceV = C⊗QV overQ. hen the automorphism
σ = (12345) ∈ Gal( f /Q) of order 5 acting on the αi in the obvious manner is
an automorphism of V , and it can be li�ed to the automorphism σ̄ = 1C⊗σ of
V which also has order 5. Since σ̄ 5 = 1, σ̄ is diagonalizable, and its eigenvalues
are 5th roots of unity. Let v1, . . . , vt be the eigenbasis associated with σ̄ in
V , then since each vi is an eigenvector of σ̄ , we have σ̄vi = єivi for some
corresponding 5th root of unity єi .
We identify V and its copy in V , i.e., we identify∑5

k=1 ciαi in V and 1C ⊗
∑

5
k=1 ciαi in V . Now consider the linear expansion of α1 in terms of the

eigenbasis of σ̄ : α1 = ∑
t

i=1 civi for some ci ∈ C. hen

(2) σ̄α1 =
t

∑
i=1
ci σ̄vi =

t

∑
i=1
ciєivi ,

and there must exist a λ such that cλ ≠ 0 and єλ ≠ 1 in (2), because otherwise
σ̄α1 = α1. Moreover, αk = σ̄ kα1 = ∑

t

i=1 ciєki vi .
Now, assume that two distinct pairs of αs have the same sum, say αi + α j =

αk + αl . hen comparing the λth coordinates, we have that

cλє
i

λ
+ cλє

j

λ
= cλє

k

λ
+ cλє

l

λ
,

є
i

λ
+ є

j

λ
= єk

λ
+ єl

λ
.

Hence we have the identity:

є
i

λ
+ є

j

λ
− єk

λ
− єl

λ
= 0.

his implies that єλ is a root of the non-zero polynomial x i+x j−xk−x l ∈ Q[x],
a contradiction since theminimal polynomial of єλ overQ is x4+x3+x2+x+1.
hus, all sums of pairs of roots αi + α j, i ≠ j, are pairwise distinct, so P10(x)
is separable.
Finally, we show that P10(x) and f (x) have the same splitting ûeld. Denote

the respective splitting ûelds as P10/Q and f /Q, then clearly P10/Q ⊆ f /Q. To
see that f /Q ⊆ P10/Q, it suõces to observe that αi ∈ P10/Q for all i:

αi =
1
2
((αi + α j) + (αi + αk) − (α j + αk)) ∈ P10/Q.

hus P10/Q = f /Q. We conclude that Gal(P10/Q) ≅ Gal( f /Q). �
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By Lemma 1, Gal( f /Q) is transitive whenever f (x) is irreducible in Q[x],
and so it must be one of the subgroups shown in Figure 2. Since the only
solvable subgroups of S5 are those of F20, it is easy to see that an irreducible
quintic over Q is solvable by radicals if and only if its Galois group is a sub-
group of F20. We can now proceed to classify the Galois groups of irreducible
quintics.

S5

A5
F20 = Z5 ⋊Z4

D5

C5

120

60
20

10

5

Figure 2. Transitive subgroups of S5 and their respective orders

heorem2. Let f (x) ∈ Q[x] be a quintic irreducible overQ. AssumeDisc( f ) ∈
(Q∗)2, then:

(1) P10(x) is irreducible over Q if and only if Gal( f /Q) ≅ A5.

Otherwise, P10(x) is the product of two quintics irreducible over Q and
(2) f (x) has a complex root if Gal( f /Q) ≅ D5;

(3) f (x) has 5 real roots if Gal( f /Q) ≅ Z5.

Now assume that Disc( f ) ∉ (Q∗)2, then:

(4) P10(x) is irreducible over Q if and only if Gal( f /Q) ≅ S5;

(5) Otherwise, P10(x) is the product of two quintics irreducible over Q and

Gal( f /Q) ≅ F20.

Proof. First assume that Disc( f ) ∈ (Q∗)2, then Gal( f /Q) is isomorphic to a
subgroup of A5. We begin by determining the number of orbits of A5, D5 and
Z5 acting on the roots of P10(x) by observing their action on K5.
First, we consider A5, which can be realized as A5 ≅ ⟨ (12345), (123) ⟩ < S5.

As exhibited in Figure 3, the permutation (123) ûxes only the edge α4α5 and
permutes all others, while (12345) permutes all edges of the pentagon. hus,
A5 has one orbit when acting on the roots of P10(x), and so by Lemma 1,
P10(x) is irreducible if Gal( f /Q) ≅ A5.
We now consider D5, which can be realized as D5 ≅ ⟨ (12345), (25)(34) ⟩ <

S5. We recall the fact that D5 is the re�ection group of the regular pentagon
and is distance preserving. hus, from a geometric point of view, it is clear
that D5 has at least two orbits since it cannot send edges from the pentagram
to the pentagon nor vice-versa. Geometrically, it is clear that the pentagon’s
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α1

α2

α3α4

α5 (123)
ÐÐ→

α3

α1

α2α4

α5

Figure 3. he action of (123) ∈ A5 acting on K5

edges form an orbit under rotation, and similarly for the pentagram. hus, D5
has two orbits of order 5 when acting on the roots of P10(x), and we conclude
by Lemma 1 that Gal( f /Q) ≅ D5 only if P10(x) factors into two quintics
irreducible over Q.
Finally, we consider Z5, which can be realized as Z5 ≅ ⟨ (12345) ⟩ < S5.

It is easy to see that Z5 has two orbits of order 5 since it only acts on the
pentagon and pentagram by rotation. It is also easy to see that f (x) have all
real roots is a necessary condition for Gal( f /Q) ≅ Z5, since complex roots
imply Gal( f /Q) contains an involution and 2 ∤ ∣Z5∣.
Combining these analyses, we see that A5 is the only group with one orbit

when acting on the roots of P10(x), so Gal( f /Q) ≅ A5 if and only if P10(x)
is irreducible over Q. Both D5 and Z5 have two orbits, and we presented
necessary conditions for each in terms of the roots of f (x).

α1

α2

α3α4

α5 (2345)
ÐÐÐ→

α1

α5

α2α3

α4

Figure 4. he action of (2345) ∈ F20 acting on K5

Now assume that Disc( f ) ∉ (Q∗)2. Since S5 is intransitive, it has one
orbit when acting on the roots of P10(x). However, as shown in Figure 4,
F20 ≅ ⟨ (12345), (2345) ⟩ < S5 has two orbits, each of order ûve: the pentagon
and the pentagram. hus, conclusions (4) and (5) are immediate by Lemma 1
and Corollary 1. �



ON IRREDUCIBLE RATIONAL QUINTICS 7

Although in general, computing the resolvent P10(x) of an irreducible
quintic f (x) ∈ Q[x] is diõcult, Jensen and Yui [JY80; JY82] assert without
proof that the resolvent P10(x) of a quintic f (x) = x5 + ax + b ∈ Q[x]
irreducible over Q can be expressed as
(3) P10(x) = x

10 − 3ax6 − 11bx5 − 4a2
x

2 + 4abx − b2 ∈ Z[a, b][x].
We can further simplify the task of classifying such quintics via Corollary

2:

Lemma 2 ([JY82, Lemma II.2.4]). Let f (x) = x p + ax + b ∈ Q[x] with p ≥ 3
prime, and assume that f (x) is irreducible over Q. hen f (x) has at most

three real roots and only one if a > 0.

Proof. Since f (x) has odd degree, it must have at least one real root. By
analysis, since d f /dx = px p−1+ a has at most two real roots and none if a > 0,
the assertion follows. �

he following corollary of Lemma 2 is a correction of [JY82, Corollary
II.2.5].

Corollary 2. Let f (x) = x p + ax + b ∈ Q[x]. If p > 3 is prime, or if p = 3 and
a = 1, then Gal( f /Q) /≅ Zp.

Proof. By the lemma, f (x) has at least one complex conjugate pair of roots,
and so Gal( f /Q) contains an involution. hen 2 ∣ ∣Gal( f /Q)∣, but 2 ∤ ∣Zp∣,
so Gal( f /Q) /≅ Zp. �

In fact, even though the classiûcation presented above for generic irre-
ducible rational quintics is incomplete, Weber’s theorem [Web98a, §189;
Web98b, §189], as given by Jensen, Ledet and Yui [JLY02, heorem 2.3.4],
completes the classiûcation for irreducible rational quintics in Bring-Jerrard
form:

heorem 3. Let f (x) = x5 + ax + b ∈ Q[x] be irreducible. If a = 0, then
Gal( f /Q) ≅ F20. Otherwise, Gal( f /Q) ≅ D5 (resp. F20) if and only if

(i) Disc( f ) ∈ (Q∗)2 (resp. ∉ (Q∗)2)

(ii) a and b have the form

a =
55λµ4

(λ − 1)4(λ2 − 6λ + 25)
, b = aµ

for some λ, µ ∈ Q with λ ≠ 1 and µ ≠ 0.

Weber’s theorem is logically equivalent to one by Spearman and Williams
[SW94, p. 987ò.], presented below (heorem 4), which can be used to obtain
the roots of an irreducible rational quintic in Bring-Jerrard form.
For a complete classiûcation of general irreducible rational quintics, the

reader is referred to [Dum91].
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4. Solving Solvable Quintics by Radicals

he following theorem is by Spearman and Williams [SW94], and its
suõciency condition was known in 1885 by Glashan [Gla85]. We present an
expanded version of its proof since it provides a constructive approach to
ûnding the constants є, c, and e (see (10) and Example 2), and thus to ûnding
the roots of an irreducible quintic in Q[x] in Bring-Jerrard form.

heorem4. Let a, b ∈ Q such that the quintic trinomial x5+ax+b is irreducible

over Q. hen the equation x5 + ax + b = 0 is solvable by radicals if and only if

there exist rational numbers є = ±1, c ≥ 0 and e ≠ 0 such that

(4) a =
5e4 (3 − 4єc)

c2 + 1
, b =

−4e5 (11є + 2c)
c2 + 1

,

in which case Gal( f /Q) ≅ D5 if and only if 5D ∈ (Q∗)2
, where D = c2 + 1,

otherwise, Gal( f /Q) ≅ F20. If the equation is solvable by radicals, then the

roots are

(5) x j = e (ω
j
u1 + ω

2 j
u2 + ω

3 j
u3 + ω

4 j
u4)

for j = 0, 1, 2, 3, 4, where ω = exp (2πi/5) and

(6)
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u1 = ( v2
1 v3
D2 )

(1/5)
u2 = (

v2
3v4

D2 )
(1/5)

u3 = ( v2
2v1
D2 )

(1/5)
u4 = (

v2
4v2

D2 )
(1/5) ,

(7)
⎧⎪⎪
⎨
⎪⎪⎩

v1 =
√
D +

√
D − є

√
D v2 = −

√
D −

√
D + є

√
D

v3 = −
√
D +

√
D + є

√
D v4 =

√
D −

√
D − є

√
D

.

Proof. We ûrst assume that f (x) = x5 + ax + b is solvable by radicals. hen
by [Dum91, heorem 1], this implies that the resolvent sextic

f20(x) = x
6 + 8ax5 + 40a2

x
4 + 160a3

x
3 + 400a4

x
2+

+ (512a5 − 3125b4) x + (256a6 − 9375ab4)

= (x + 2a)4 (x2 + 16a2) − 55b4 (x + 3a) ∈ Q[x](8)

of f (x) has a rational root r. hen f20(r) = 0, and rearranging terms gives us

(9)
55b4 (r + 3a)

(r + 2a)4 (r2 + 16a2)
= 1,

and when a ≠ 0, we have r ≠ −2a,−3a. We let the rational numbers c ≥ 0,
e ≠ 0, є = ±1 be given by

(10) єc =
3r − 16a
4(r + 3a)

, e =
−5bє

2(r + 2a)
.
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hen by simple algebraic manipulation, we get that

c
2 + 1 =

25(r2 + 16a2)

16(r + 3a)2 ,(11)

3 − 4єc =
25a

r + 3a
,(12)

and

11є + 2c =
25(r + 2a)є
2(r + 3a)

.(13)

hen by (11), (12), and (9),

5e4(3 − 4єc)
c2 + 1

= a
55b4(r + 3a)

(r + 2a)4(r2 + 16a2)
= a

and by (11), (13), and (9),

−4e5(11є + 2c)
c2 + 1

= b
55b4(r + 3a)

(r + 2a)4 (r2 + 16a2)
= b.

hus, the parametrization (4) of a and b holds whenever f (x) is solvable.
We now show that the rational quintic

f̃ (x) = x
5 +

5e4(3 − 4єc)
c2 + 1

x +
−4e5(11є + 2c)

c2 + 1

is solvable by radicals with roots given by (5) when e = 1; a transformation
x ↦ ex provides the result for general e. Equations (7) imply that

(14) {
v1 + v4 = 2

√
D v2 + v2 = −2

√
D

v1v4 = є
√
D v2v3 = −є

√
D

and so

(15) {
v1 + v2 + v3 + v4 = 0

v1v4 + v2v3 = 0 .

Taking û�h powers in (6), we get

(16) u
5
1 =

v2
1v3

D2 , u
5
2 =

v2
3v4

D2 , u
5
3 =

v2
2v1

D2 , u
5
4 =

v2
4v2

D2 .
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By (14), (16), and the fact that є3 = є, we get

(u1u4)
5 =

v2
1v3

D2

v2
4v2

D2

= D−4(v1v4)
2(v2v3)

= D−4 (є
√
D)

2
(−є

√
D)

=
−є3

D5/2

=
−є

D5/2

and so since the real û�h roots of є and −1 are є and −1 respectively, we get

u1u4 = −
є

√
D

.

Similarly easy computations using (14) and (16) give us that

(17)

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

u1u4 = −
є

√
D

u2u3 =
є

√
D

u2
1u3 =

v1

D
u2

2u1 =
v3

D
u2

3u4 =
v2

D
u2

4u2 =
v4

D

and

(18)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

u
3
1u2 =

єv1v3

D
√
D

u
3
3u1 = −

єv1v2

D
√
D

u
3
4u3 =

єv2v4

D
√
D

u
3
2u4 = −

єv3v4

D
√
D

.

Now consider the quintic polynomial whose roots are given by (5), that’s to
say the quintic

(19) F(x) =
4

∏
j=0

(x − (ω j
u1 + ω

2 j
u2 + ω

3 j
u3 + ω

4 j
u4)) ,

where u1, u2, u3, u4 are nonzero real numbers and ω is a complex û�h root of
unity. We show that f̃ (x) = F(x).
By [SW94, p. 986f.], symbolically evaluating F(x) at its roots R j = ω ju1 +

ω2 ju2 + ω3 ju3 + ω4 ju4 gives us the following identity valid for j = 0, 1, 2, 3, 4:

(20) R
5
j
− 5UR

3
j
− 5VR

2
j + 5WR j + 5(X − Y) − Z = 0
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where

U = u1u4 + u2u3,
V = u

2
1u3 + u

2
2u1 + u

2
3u4 + u

2
4u2,

W = u
2
1u

2
4 + u

2
2u

2
3 − u

2
1u2 − u

3
2u4 − u

3
3u1 − u

3
4u3 − u1u2u3u4,

X = u
3
1u3u4 + u

3
2u1u3 + u

3
3u2u4 + u

3
4u1u2,

Y = u1u
2
3u

2
4 + u2u

2
1u

2
3 + u3u

2
2u

2
4 + u4u

2
1u

2
2 ,

Z = u
5
1 + u

5
2 + u

5
3 + u

5
4.

However, by (17), U = 0, and by (17) and (15), V = 1
D
(v1 + v2 + v3 + v4) = 0.

Using (7), (16), (17), and (18), it can be shown that

5W = 5 (u3
1u3u4 + u

3
2u1u3 + u

3
3u2u4 + u

3
4u1u2)

=
5 (3 − 4є

√
D − 1)

D

=
5 (3 − 4єc)
c2 + 1

(21)

and

5(X − Y) − Z = 5 ((u3
1u3u4 + u

3
2u1u3 + u

3
3u2u4 + u

3
4u1u2)−

(u1u
2
3u

2
4 + u2u

2
1u

2
3 + u3u

2
2u

2
4 + u4u

2
1u

2
2))−

(u5
1 + u

5
2 + u

5
3 + u

5
4)

= −
(44є + 8

√
D − 1)

D

= −
4 (11є + 2c)
c2 + 1

.

(22)

hus, by (15), (17), (21), and (22), we have that the identity (20) can be
expressed as

(23) R
5
j
+

5 (3 − 4єc)
c2 + 1

R j +
−4 (11є + 2c)

c2 + 1
= 0

for j = 0, 1, 2, 3, 4. It follows that f̃ (x) = F(x), and thus that the roots of our
original quintic x5 + ax + b are given by (5).
Conversely, assume that f̃ (x) in (4) is irreducible over Q. hen by the

discussion above, it is solvable by radicals, and so its Galois group is solvable.
hus, its Galois group is isomorphic to the Frobenius group F20, the dihedral
group of the pentagon D5, or the cyclic group of order 5, Z5. However, since
f̃ (x) is in Bring-Jerrard form, by Corollary 2, its Galois group cannot be
Z5. By Proposition 1, the discriminant of a quintic of the form x5 + ax + b is
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44a5 + 55b4, and so the discriminant of f̃ (x) is

Disc( f̃ ) =
4455e20

D5 (4єc3 − 84c2 − 37єc − 122)2 .

Since the Galois group of f̃ (x) is a subgroup of A5 if and only Disc( f̃ ) is a
perfect square in Q, it follows that the Galois group of f̃ (x) is isomorphic to
D5 if and only if Disc( f̃ ) is a perfect square in Q. But this occurs if and only
if 5D is a perfect square in Q, and so the theorem follows. �

5. Examples

We now consider several examples. In Examples 1 and 2, we apply heo-
rem 2 to determine the Galois group of irreducible rational quintics, and in
Example 2, we further apply heorem 4 to solve the quintic by radicals. In
Example 3, we show that we cannot rely on numerical methods to compute
the decic resolvent P10(x).

Example 1. Consider the polynomial f (x) = x5 + 121x + 55 ∈ Q[x], which is
irreducible over Q by Eisenstein’s criterion with p = 11. hen by Proposition
1, Disc( f ) = 441215 + 55554 = 3 ⋅ 114 ⋅ 109 ⋅ 1392883 ∉ (Q∗)2, and so Gal( f /Q)
must be isomorphic to one of S5 or F20. By (3),

P10(x) = x
10 − 363x6 − 605x5 − 58564x2 + 26620x − 3025.

Using a computer algebra system, we see that P10(x) is irreducible over Q,
and so we conclude by heorem 2 that Gal( f /Q) ≅ S5 and that f (x) is not
solvable by radicals.

Example 2. Consider the polynomial f (x) = x5 − 3125x − 37500 ∈ Q[x]
which can be shown to be irreducible over Q using a computer algebra sys-
tem. hen by Proposition 1, we have Disc( f ) = 44(−3125)5 + 55(−37500)4 =
(26513)2 ∈ (Q∗)2, and so Gal( f /Q) must be one of A5 or D5 since Gal( f /Q)
is isomorphic to a subgroup of A5 and Corollary 2 prohibits Z5. By (3),

P10(x) = x
10 + 9375x6 + 412500x5 − 39062500x2+

+ 468750000x − 1406250000
= (x5 − 125x3 + 1250x2 + 18750x + 112500)
× (x5 + 125x3 − 1250x2 + 6250x − 12500)

and so we conclude by heorem 2 that Gal( f /Q) ≅ D5.
Since Gal( f /Q) ≅ D5, f (x) is solvable; we ûnd its roots using heorem 4.

We begin by ûnding the rational root of the resolvent sextic f20(x) of f (x)
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given by (8),

f20(x) = (x − 6250)4(x2 + 15625⋅4)−
61798095703125 ⋅ 108(x − 9375)

= x
6 − 25 ⋅ 103

x
5 + 390625 ⋅ 103

x
4 − 48828125 ⋅ 105

x
3+

+ 3814697265625 ⋅ 104
x

2 − 63323974609375 ⋅ 108x+
+ 5817413330078125 ⋅ 1010.

Applying the rational roots test, we ûnd that 25000 is a rational root of f20(x).
We now solve for є, c and e using (10):

єc =
3r − 16a
4(r + 3a)

=
3 ⋅ 25000 − 16(−3125)
4(25000 + 3(−3125))

= 2

and

e =
−5bє

2(r + 2a)

=
−5(−37500)є

2(25000 + 2(−3125))
= −5є.

Since c ≥ 0 and є = ±1, we conclude that є = 1, c = 2, and e = −5. hen the
roots of f (x) are given by

x j = −5 (ω j
u1 + ω

2 j
u2 + ω

3 j
u3 + ω

4 j
u4)

for j = 0, 1, 2, 3, 4, where ω = exp (2πi/5) and

u1 =
⎛

⎝

(
√

5 +
√

5 −
√

5)
2
(−

√
5 +

√
5 +

√
5)

25
⎞

⎠

(1/5)

=
⎛
⎜
⎝

25 − 10
√

5 + 3
√

5 (25 − 11
√

5)

25

⎞
⎟
⎠

(1/5)

,

u2 =
⎛

⎝

(−
√

5 +
√

5 +
√

5)
2
(
√

5 −
√

5 −
√

5)
25

⎞

⎠

(1/5)

=
⎛
⎜
⎝

25 + 10
√

5 − 3
√

5 (25 + 11
√

5)

25

⎞
⎟
⎠

(1/5)

,
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u3 =
⎛

⎝

(−
√

5 −
√

5 +
√

5)
2
(
√

5 +
√

5 −
√

5)
25

⎞

⎠

(1/5)

=
⎛
⎜
⎝

25 + 10
√

5 + 3
√

5 (25 + 11
√

5)

25

⎞
⎟
⎠

(1/5)

,

and

u4 =
⎛

⎝

(
√

5 −
√

5 −
√

5)
2
(−

√
5 −

√
5 +

√
5)

25
⎞

⎠

(1/5)

=
⎛
⎜
⎝

25 − 10
√

5 − 3
√

5 (25 − 11
√

5)

25

⎞
⎟
⎠

(1/5)

.

Example 3. Consider the polynomial f (x) = x5−2x4−78x3+159x2−80x+1 ∈
Q[x], which is an instance of the generic family

f (x; s, t) = x
5 + (t − 3)x4 + (s − t + 3)x3+

+ (t2 − t − 2s − 1)x2 + sx + t ∈ Q(s, t)[x]

for D5 given by [JLY02, heorem 2.3.5] instantiated with s = −80 and t = 1.
hen f (x) ≡ x5 + x2 + 1 (mod 2), which is easily seen to be irreducible over
F2: f (x) has no roots in F2, and if it factors as the product of a quadratic and
a cubic in F2[x], then for some a, b, c ∈ F2:

f (x) = (x2 + ax + 1)(x3 + bx2 + cx + 1)
= x

5 + bx4 + (ab + c)x3 + (b + ac)x2 + (a + c)x + 1,

which implies b = c = 0. But this gives that f (x) has no quadratic term, a
contradiction. hus, f (x) is irreducible over Q. Using a computer algebra
system, we determine that: Disc( f ) = 3499417472929 = (7238177)2 ∈ (Q∗)2.
hus, Gal( f /Q) is isomorphic to one of A5,D5,Z5. Using the Julia so�ware
system [Bez+14; Bez+12] with the Roots package implementing an algorithm
by Zeng [Zen04] to numerically determine the roots of f (x), we determine
that

P10(x) = x
10 + 8x9 − 210x8 − 1531x7 + 13948x6 + 91971x5

− 268661x4 − 1667396x3 − 1284161x2 − 1003871 + 64315,

which can readily be seen to be irreducible over Q using a computer algebra
system. hus, by heorem 2, Gal( f /Q) ≅ A5. his contradicts the fact that
f (x) is an instance of a generic polynomial for D5, and illustrates that even
with 64 bit �oating point numbers, it is impossible to use numerical methods
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to compute the roots of f (x) in order determine P10(x) using (1). he reason
is that, since f (x) is irreducible over Q, its roots are irrational, and it is only
possible to ûnitely approximate irrational numbers numbers using �oating
point numbers. It follows that since the αi + α j of (1) are irrational, they too
can only ûnitely be approximated using �oating point numbers, and so the
polynomial obtained by implementing the deûnition of P10(x) given by (1)
using �oating-point arithmetic is at best an approximation of P10(x). Not only
can irrationals only be ûnitely approximated, it is also of note is that many
rationals can only be approximated; for example, the decimal number 0.1
has an inûnite repeating binary representation and lies strictly between two
�oating-point numbers in base 2, neither of which exactly represent it [Gol91,
p. 7]. At a more fundamental level, it is interesting to recall that, although
Turing showed in 1937 [Tur37] that all algebraic numbers are computable
(i.e., there exists a ûnite procedure to compute their decimal expansion), he
also showed in the same paper that only a countable number of reals are
computable, thereby limiting what numbers can be completely represented
on a computer.

In short, it is clear that, in the context of heorem 2, the decic P10(x)
computed using (1) from roots of f (x) determined by numerical methods
cannot be used in place of the actual decic P10(x) of f (x). he reader is
referred to a paper by Goldberg [Gol91] for a deeper discussion of �oating
point arithmetic and its limitations.
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degré’. French. In: Comptes Rendus de l’Académie des Sciences

46.1 (1858), pp. 508–515. url: http://gallica.bnf.fr/ark:
/12148/bpt6k3003h/f508.image.langFR.

[Jer35a] G. B. Jerrard. ‘On certain Transformations connected with the
ûnite Solution of Equations of the Fi�h Degree’. In: Philosophical
Magazine Series 3 7.39 (Sept. 1835), pp. 202–203. issn: 1941-5966.
doi: 10.1080/14786443508648695. url: http://www.tand
fonline.com/doi/abs/10.1080/14786443508648695.

http://www.ams.org/bookstore?fn=20&ikey=CLN-15
http://www.ams.org/bookstore?fn=20&ikey=CLN-15
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145
http://julialang.org
http://julialang.org
http://dx.doi.org/10.1007/BF03025320
http://link.springer.com/10.1007/BF03025320
http://dx.doi.org/10.1090/S0025-5718-1991-1079014-X
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-1991-1079014-X
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-1991-1079014-X
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-1991-1079014-X
http://dx.doi.org/10.2307/2369450
http://www.jstor.org/stable/2369450
http://www.jstor.org/stable/2369450
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/103162.103163
http://portal.acm.org/citation.cfm?doid=103162.103163
http://portal.acm.org/citation.cfm?doid=103162.103163
http://books.google.ca/books?id=KrObAAAAMAAJ
http://books.google.ca/books?id=KrObAAAAMAAJ
http://gallica.bnf.fr/ark:/12148/bpt6k3003h/f508.image.langFR
http://gallica.bnf.fr/ark:/12148/bpt6k3003h/f508.image.langFR
http://dx.doi.org/10.1080/14786443508648695
http://www.tandfonline.com/doi/abs/10.1080/14786443508648695
http://www.tandfonline.com/doi/abs/10.1080/14786443508648695


REFERENCES 17

[Jer35b] G. B. Jerrard. ‘On the transformation of equations’. In: Philo-
sophical Magazine Series 3 7.42 (Dec. 1835), pp. 478–480. issn:
1941-5966. doi: 10.1080/14786443508648769. url: http:
//www.tandfonline.com/doi/abs/10.1080/14786443508

648769.
[JLY02] Christian U. Jensen, Arne Ledet and Noriko Yui. Generic poly-

nomials: constructive aspects of the inverse Galois problem. Math-
ematical Sciences Research Institute Publications. Cambridge:
Cambridge University Press, 2002, p. 258. isbn: 0521819989.

[JY80] Christian U. Jensen and Noriko Yui. ‘Polynomials with D5 (resp.
A5) asGalois group’. In:Comptes rendusmathématiques 2.6 (1980),
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